A Methodology for Selection of Optimal Viewing Angles for an Accurate Estimation of Leaf Area Index based on Information Theory

Yanjuan Yao, Qiang Liu, Qinhuo Liu, W. Fan, Xiaowen Li
{"title":"A Methodology for Selection of Optimal Viewing Angles for an Accurate Estimation of Leaf Area Index based on Information Theory","authors":"Yanjuan Yao, Qiang Liu, Qinhuo Liu, W. Fan, Xiaowen Li","doi":"10.1109/IGARSS.2008.4780154","DOIUrl":null,"url":null,"abstract":"More and more wide-view angle or multi-angular sensors provide the possibility to retrieve vegetation parameters. It is an important issue to access the accuracy and uncertainty of the products retrieved from different view angle observations. This paper presents an approach to evaluate the information content of the multi-angular remote sensing data. The proposed method is based on information theory. By using the entropy difference between all unknown parameters and non-target parameters for the remote sensing data, the information content is quantified. The presented methodology revealed the information content in the remote sensing data. The accuracy of the vegetation parameters retrieved from canopy reflectance depends mainly on the information about target parameter contained within observations. The relationship between information content and the LAI inversion accuracy is listed in this paper.","PeriodicalId":237798,"journal":{"name":"IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2008.4780154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

More and more wide-view angle or multi-angular sensors provide the possibility to retrieve vegetation parameters. It is an important issue to access the accuracy and uncertainty of the products retrieved from different view angle observations. This paper presents an approach to evaluate the information content of the multi-angular remote sensing data. The proposed method is based on information theory. By using the entropy difference between all unknown parameters and non-target parameters for the remote sensing data, the information content is quantified. The presented methodology revealed the information content in the remote sensing data. The accuracy of the vegetation parameters retrieved from canopy reflectance depends mainly on the information about target parameter contained within observations. The relationship between information content and the LAI inversion accuracy is listed in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息论的叶面积指数最佳视角选择方法
越来越多的广角或多角度传感器为获取植被参数提供了可能。获取不同视角观测所得产品的精度和不确定性是一个重要的问题。提出了一种多角度遥感数据信息量评估方法。该方法基于信息论。利用遥感数据中所有未知参数与非目标参数之间的熵差来量化信息含量。所提出的方法揭示了遥感数据中的信息内容。利用冠层反射率反演植被参数的准确性主要取决于观测数据中包含的目标参数信息。文中列出了信息含量与LAI反演精度的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NPOESS Precipitation Retrievals using the ATMS Passive Microwave Spectrometer An Advanced Quantitative Retrieval Algorithm for Aerosol Optical Depth over Land from TERRA and AQUA MODIS Data POLSCAT Ku-band Radar Remote Sensing of Terrestrial Snow Cover SAR Measurement of Ocean Surface Wind Using A Physics Model Validation of Multilayered Cloud Properties using A-Train Satellite Measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1