A Learning Classifier System Approach to Clustering

K. Tamee, L. Bull, O. Pinngern
{"title":"A Learning Classifier System Approach to Clustering","authors":"K. Tamee, L. Bull, O. Pinngern","doi":"10.1109/ISDA.2006.62","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to clustering using a simple accuracy-based learning classifier system. Our approach achieves this by exploiting the evolutionary computing and reinforcement learning techniques inherent to such systems. The purpose of the work is to develop an approach to learning rules which accurately describe clusters without prior assumptions as to their number within a given dataset. Favourable comparisons to the commonly used k-means algorithm are demonstrated on a number of datasets","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a novel approach to clustering using a simple accuracy-based learning classifier system. Our approach achieves this by exploiting the evolutionary computing and reinforcement learning techniques inherent to such systems. The purpose of the work is to develop an approach to learning rules which accurately describe clusters without prior assumptions as to their number within a given dataset. Favourable comparisons to the commonly used k-means algorithm are demonstrated on a number of datasets
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚类的一种学习分类器系统方法
本文提出了一种新的聚类方法,使用一个简单的基于精度的学习分类器系统。我们的方法通过利用这种系统固有的进化计算和强化学习技术来实现这一目标。这项工作的目的是开发一种学习规则的方法,该规则可以准确地描述集群,而无需事先假设给定数据集中集群的数量。在许多数据集上证明了与常用的k-means算法的有利比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Lagrange Nonlinear Programming Neural Networks for Inequality Constraints Enhancement Filter for Computer-Aided Detection of Pulmonary Nodules on Thoracic CT images A View-Based Toeplitz-Matrix-Supported System for Word Recognition without Segmentation A Novel Spatial Clustering with Obstacles Constraints Based on Genetic Algorithms and K-Medoids An Intelligent Runoff Forecasting Method Based on Fuzzy sets, Neural network and Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1