CET-LATS: Compressing Evolution of TINs from Location Aware Time Series

Prabin Giri, H. Hashemi, Evan Gossling, Jason T. Guo, Koshal P. Shah, Goce Trajcevski
{"title":"CET-LATS: Compressing Evolution of TINs from Location Aware Time Series","authors":"Prabin Giri, H. Hashemi, Evan Gossling, Jason T. Guo, Koshal P. Shah, Goce Trajcevski","doi":"10.1145/3397536.3422352","DOIUrl":null,"url":null,"abstract":"In this paper, we present the CET-LATS (Compressing Evolution of TINs from Location Aware Time Series) system, which enables testing the impacts of various compression approaches on evolving Triangulated Irregular Networks (TINs). Specifically, we consider the settings in which values measured in distinct locations and at different time instants, are represented as time series of the corresponding measurements, generating a sequence of TINs. Different compression techniques applied to location-specific time series may have different impacts on the representation of the global evolution of TINs - depending on the distance functions used to evaluate the distortion. CET-LATS users can view and analyze compression vs. (im)precision trade-offs over multiple compression methods and distance functions, and decide which method works best for their application. We also provide an option to investigate the impact of the choice of a compression method on the quality of prediction. Our prototype is a web-based system using Flask, a lightweight Python framework, relying on Apache Spark for data management and JSON files to communicate with the front-end, enabling extensibility in terms of adding new data sources as well as compression techniques, distance functions and prediction methods.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"368 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present the CET-LATS (Compressing Evolution of TINs from Location Aware Time Series) system, which enables testing the impacts of various compression approaches on evolving Triangulated Irregular Networks (TINs). Specifically, we consider the settings in which values measured in distinct locations and at different time instants, are represented as time series of the corresponding measurements, generating a sequence of TINs. Different compression techniques applied to location-specific time series may have different impacts on the representation of the global evolution of TINs - depending on the distance functions used to evaluate the distortion. CET-LATS users can view and analyze compression vs. (im)precision trade-offs over multiple compression methods and distance functions, and decide which method works best for their application. We also provide an option to investigate the impact of the choice of a compression method on the quality of prediction. Our prototype is a web-based system using Flask, a lightweight Python framework, relying on Apache Spark for data management and JSON files to communicate with the front-end, enabling extensibility in terms of adding new data sources as well as compression techniques, distance functions and prediction methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从位置感知时间序列中压缩tin的演化
在本文中,我们提出了CET-LATS(从位置感知时间序列中压缩不规则三角网络)系统,该系统能够测试各种压缩方法对不断发展的不规则三角网络(tin)的影响。具体来说,我们考虑了在不同位置和不同时刻测量值的设置,将其表示为相应测量的时间序列,从而生成tin序列。不同的压缩技术应用于特定位置的时间序列可能对tin的全局演化的表示有不同的影响,这取决于用于评估畸变的距离函数。CET-LATS用户可以查看和分析压缩与(im)精度权衡多种压缩方法和距离函数,并决定哪种方法最适合他们的应用。我们还提供了一个选项来研究选择压缩方法对预测质量的影响。我们的原型是一个基于web的系统,使用Flask(一个轻量级Python框架),依靠Apache Spark进行数据管理和JSON文件与前端通信,在添加新数据源以及压缩技术、距离函数和预测方法方面实现可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1