Interactive Visual Data Mining of a Large Fire Detector Database

SeungJin Lim
{"title":"Interactive Visual Data Mining of a Large Fire Detector Database","authors":"SeungJin Lim","doi":"10.1109/ICISA.2010.5480395","DOIUrl":null,"url":null,"abstract":"As sensor networks become ubiquitous, the need for data mining of sensor network data is gaining momentum. Sensor network data is typically large, noisy and imbalanced, which makes it challenging to build a robust model from the data. In addition, traditional data mining often requires postmortem processing of the resulting statistically significant patterns to identify interesting patterns by means of visualization. For this reason, interactive visual data mining is employed for mining patterns from the fire detector dataset of the National Fire Incident Reporting System (NFIRS) database in this work. The suitability of interactive visual data mining, in place of its traditional counterpart, is demonstrated.","PeriodicalId":313762,"journal":{"name":"2010 International Conference on Information Science and Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2010.5480395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As sensor networks become ubiquitous, the need for data mining of sensor network data is gaining momentum. Sensor network data is typically large, noisy and imbalanced, which makes it challenging to build a robust model from the data. In addition, traditional data mining often requires postmortem processing of the resulting statistically significant patterns to identify interesting patterns by means of visualization. For this reason, interactive visual data mining is employed for mining patterns from the fire detector dataset of the National Fire Incident Reporting System (NFIRS) database in this work. The suitability of interactive visual data mining, in place of its traditional counterpart, is demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型火灾探测器数据库的交互式可视化数据挖掘
随着传感器网络的普及,对传感器网络数据进行数据挖掘的需求日益增长。传感器网络数据通常是庞大的、有噪声的和不平衡的,这使得从数据中建立一个鲁棒模型具有挑战性。此外,传统的数据挖掘通常需要对结果统计上显著的模式进行事后处理,以便通过可视化的方式识别有趣的模式。为此,本研究采用交互式可视化数据挖掘技术,从国家火灾事件报告系统(NFIRS)数据库的火灾探测器数据集中挖掘模式。演示了交互式可视化数据挖掘取代传统数据挖掘的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Enhanced Security Techniques of BGP for DRDoS Attack Software Maintenance Prediction Using Weighted Scenarios: An Architecture Perspective A Novel Image Retrieval Scheme Using DCT Filter-Bank of Weighted Color Components Masking Based Segmentation of Diseased MRI Images Improved Related-Key Boomerang Cryptanalysis of AES-256
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1