Characterization of the CO2-Fluid-Shale Interface Via Feature Relocation Using Field-Emission Scanning Electron Microscopy, in Situ Infrared Spectroscopy, and Pore Size Analysis

A. Goodman, S. Sanguinito, B. Kutchko, S. Natesakhawat, J. Culp
{"title":"Characterization of the CO2-Fluid-Shale Interface Via Feature Relocation Using Field-Emission Scanning Electron Microscopy, in Situ Infrared Spectroscopy, and Pore Size Analysis","authors":"A. Goodman, S. Sanguinito, B. Kutchko, S. Natesakhawat, J. Culp","doi":"10.2118/191828-18erm-ms","DOIUrl":null,"url":null,"abstract":"\n Fundamental research targeting the interactions of CO2 and fluids with unconventional shale systems is limited from the perspective of using carbon dioxide 1) as an alternative fracturing fluid, 2) as an agent to enhance hydrocarbon production, and 3) as an injection agent into the shale formation for storage purposes to avert emissions to the atmosphere. In this work, we apply in-situ infrared spectroscopy (FT-IR), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) surface area and density functional theory (DFT) pore size analysis to examine the effects of CO2 and fluid on the Marcellus and Utica Shales. Results show changes to the shale at both the micron and nanometer scale after reaction with CO2 and water. These alterations could potentially alter overall permeability and fracture networks that may cause issues for future EOR activities, CO2 storage, and/or the practice of using CO2 as a hydraulic fracturing material.","PeriodicalId":298489,"journal":{"name":"Day 4 Wed, October 10, 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Wed, October 10, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191828-18erm-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fundamental research targeting the interactions of CO2 and fluids with unconventional shale systems is limited from the perspective of using carbon dioxide 1) as an alternative fracturing fluid, 2) as an agent to enhance hydrocarbon production, and 3) as an injection agent into the shale formation for storage purposes to avert emissions to the atmosphere. In this work, we apply in-situ infrared spectroscopy (FT-IR), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) surface area and density functional theory (DFT) pore size analysis to examine the effects of CO2 and fluid on the Marcellus and Utica Shales. Results show changes to the shale at both the micron and nanometer scale after reaction with CO2 and water. These alterations could potentially alter overall permeability and fracture networks that may cause issues for future EOR activities, CO2 storage, and/or the practice of using CO2 as a hydraulic fracturing material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用场发射扫描电子显微镜、原位红外光谱和孔径分析对co2 -流体-页岩界面进行特征重定位
针对非常规页岩系统中二氧化碳与流体相互作用的基础研究受到了限制,从二氧化碳的角度来看:1)作为替代压裂液,2)作为提高油气产量的剂,以及3)作为注入剂注入页岩地层以储存以避免排放到大气中。在这项工作中,我们应用原位红外光谱(FT-IR)、扫描电子显微镜结合能量色散光谱(SEM-EDS)、brunauer - emmet - teller (BET)表面积和密度泛函理论(DFT)孔径分析来研究CO2和流体对Marcellus和Utica页岩的影响。结果表明,与CO2和水反应后,页岩在微米和纳米尺度上都发生了变化。这些变化可能会改变整体渗透率和裂缝网络,这可能会给未来的提高采收率活动、二氧化碳储存和/或使用二氧化碳作为水力压裂材料的实践带来问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Degradable Fiber Composition and Shape on Proppant Suspension Innovative Play-Scale Integration of Rate Transient Analysis Data: New Stimulation Indicator and Insights on Stimulated Rock Volume Behavior With Depletion A Workflow to Investigate the Impact of the Spontaneous Imbibition of a Slickwater Fracturing Fluid on the Near Fracture Face Shale Matrix Combining Decline Curve Analysis and Geostatistics to Forecast Gas Production in the Marcellus Shale A Fast EDFM Method for Production Simulation of Complex Fractures in Naturally Fractured Reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1