Computing Statistical Characteristics When We Know Probabilities with Interval or Fuzzy Uncertainty: Computational Complexity

G. Xiang, J. W. Hall
{"title":"Computing Statistical Characteristics When We Know Probabilities with Interval or Fuzzy Uncertainty: Computational Complexity","authors":"G. Xiang, J. W. Hall","doi":"10.1109/NAFIPS.2007.383904","DOIUrl":null,"url":null,"abstract":"In traditional statistics, we usually assume that we know the exact probability distributions. In practice, we often only know the probabilities with interval uncertainty. The main emphasis on taking this uncertainty into account has been on situations in which we know a cumulative distribution function (cdf) with interval uncertainty. However, in some cases, we know the probability density function (pdf) with interval uncertainty. We show that in this situations, the exact range of some statistical characteristics can be efficiently computed. Surprisingly, for some other characteristics, similar statistical problems which are efficiently solvable for interval-valued cdf become computationally difficult (NP-hard) for interval-valued pdf.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In traditional statistics, we usually assume that we know the exact probability distributions. In practice, we often only know the probabilities with interval uncertainty. The main emphasis on taking this uncertainty into account has been on situations in which we know a cumulative distribution function (cdf) with interval uncertainty. However, in some cases, we know the probability density function (pdf) with interval uncertainty. We show that in this situations, the exact range of some statistical characteristics can be efficiently computed. Surprisingly, for some other characteristics, similar statistical problems which are efficiently solvable for interval-valued cdf become computationally difficult (NP-hard) for interval-valued pdf.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当我们知道具有区间或模糊不确定性的概率时计算统计特征:计算复杂度
在传统统计学中,我们通常假设我们知道确切的概率分布。在实践中,我们通常只知道具有区间不确定性的概率。考虑这种不确定性的主要重点是在我们知道具有区间不确定性的累积分布函数(cdf)的情况下。然而,在某些情况下,我们知道概率密度函数(pdf)具有区间不确定性。我们表明,在这种情况下,一些统计特征的精确范围可以有效地计算出来。令人惊讶的是,对于其他一些特征,区间值cdf可以有效解决的类似统计问题在区间值pdf中变得难以计算(NP-hard)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neighbourhood Sets based on Web Usage Mining Design an Intelligent Neural-Fuzzy Controller for Hybrid Motorcycle Fuzzy ROI Based 2-D/3-D Registration for Kinetic Analysis after Anterior Cruciate Ligament Reconstruction About the Division Operator in a Possibilistic Database Framework A Fast Structural Optimization Technique for IDS Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1