Predicting the performance of large programs on scalable multicomputers

B. Stramm, F. Berman
{"title":"Predicting the performance of large programs on scalable multicomputers","authors":"B. Stramm, F. Berman","doi":"10.1109/SHPCC.1992.232692","DOIUrl":null,"url":null,"abstract":"The paper introduces the retargetable program-sensitive (RPS) model which predicts the performance of static, data-independent parallel programs mapped to message-passing multicomputers. It shows that the model accurately predicts the performance of mapped programs by comparing RPS predictions to actual execution times in the Poker parallel programming environment. The paper also previews plans for further verification of the model on the NCube2 and other multicomputers.<<ETX>>","PeriodicalId":254515,"journal":{"name":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHPCC.1992.232692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The paper introduces the retargetable program-sensitive (RPS) model which predicts the performance of static, data-independent parallel programs mapped to message-passing multicomputers. It shows that the model accurately predicts the performance of mapped programs by comparing RPS predictions to actual execution times in the Poker parallel programming environment. The paper also previews plans for further verification of the model on the NCube2 and other multicomputers.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测大型程序在可伸缩多台计算机上的性能
本文介绍了可重目标程序敏感(RPS)模型,该模型用于预测映射到消息传递多计算机上的静态、数据无关的并行程序的性能。结果表明,该模型通过将RPS预测与Poker并行编程环境中的实际执行时间进行比较,准确地预测了映射程序的性能。本文还展望了在NCube2和其他多计算机上进一步验证该模型的计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable parallel molecular dynamics on MIMD supercomputers On the influence of programming models on shared memory computer performance Using atomic data structures for parallel simulation Scalability issues for a class of CFD applications Scalability of data transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1