Droplet Deformation and Breakup due to Shear Flow and Electric Field in a Confined Geometry

Rattandeep Singh, S. S. Bahga, Amit Gupta
{"title":"Droplet Deformation and Breakup due to Shear Flow and Electric Field in a Confined Geometry","authors":"Rattandeep Singh, S. S. Bahga, Amit Gupta","doi":"10.1115/ICNMM2018-7641","DOIUrl":null,"url":null,"abstract":"In this work, the behavior of a spherical droplet suspended in a confined shear flow and subjected to an external electric field has been investigated. The continuous and dispersed fluids are treated as leaky dielectrics. The subsequent flow has been computed numerically using a low spurious current, multi-component lattice Boltzmann method coupled with a leaky dielectric model. The numerical model has been validated by analyzing droplet deformation due to shear flow and electric field separately. The results obtained are shown to be in good agreement with earlier published analytical solutions. Droplet elongation predicted by our simulations rises with increase in the electric field strength. Beyond a threshold value of electric field, breakup of droplet into smaller droplets is observed. Droplet breakup in case of fluids with equal viscosity is observed at low electric field strength as compared to low viscosity ratio drops.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the behavior of a spherical droplet suspended in a confined shear flow and subjected to an external electric field has been investigated. The continuous and dispersed fluids are treated as leaky dielectrics. The subsequent flow has been computed numerically using a low spurious current, multi-component lattice Boltzmann method coupled with a leaky dielectric model. The numerical model has been validated by analyzing droplet deformation due to shear flow and electric field separately. The results obtained are shown to be in good agreement with earlier published analytical solutions. Droplet elongation predicted by our simulations rises with increase in the electric field strength. Beyond a threshold value of electric field, breakup of droplet into smaller droplets is observed. Droplet breakup in case of fluids with equal viscosity is observed at low electric field strength as compared to low viscosity ratio drops.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限几何条件下剪切流和电场对液滴变形和破裂的影响
本文研究了悬浮在受限剪切流中的球形液滴在外加电场作用下的行为。连续和分散的流体被视为漏电介质。采用低杂散电流、多分量晶格玻尔兹曼方法和漏电介质模型对后续流动进行了数值计算。通过分别分析剪切流和电场对液滴变形的影响,对数值模型进行了验证。所得结果与先前发表的解析解一致。模拟结果表明,随着电场强度的增大,液滴伸长率增大。超过电场的阈值,液滴被分解成更小的液滴。与低粘度比滴相比,在低电场强度条件下,等粘度流体的液滴破碎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical Investigation of Transition of Flow Condensation in Microchannel Spontaneous Displacement of Resident Fluid in Heterogeneous Porous Medium Measurements for Condensation of Steam-Ethanol Mixtures in Microchannels Wetting of Water Drops on a PMMA Substrate in Viscous Medium Saturated Nucleate Pool Boiling of Ethanol-Water Binary Mixtures on Smooth and Enhanced Laser Processed Metal Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1