{"title":"Droplet Deformation and Breakup due to Shear Flow and Electric Field in a Confined Geometry","authors":"Rattandeep Singh, S. S. Bahga, Amit Gupta","doi":"10.1115/ICNMM2018-7641","DOIUrl":null,"url":null,"abstract":"In this work, the behavior of a spherical droplet suspended in a confined shear flow and subjected to an external electric field has been investigated. The continuous and dispersed fluids are treated as leaky dielectrics. The subsequent flow has been computed numerically using a low spurious current, multi-component lattice Boltzmann method coupled with a leaky dielectric model. The numerical model has been validated by analyzing droplet deformation due to shear flow and electric field separately. The results obtained are shown to be in good agreement with earlier published analytical solutions. Droplet elongation predicted by our simulations rises with increase in the electric field strength. Beyond a threshold value of electric field, breakup of droplet into smaller droplets is observed. Droplet breakup in case of fluids with equal viscosity is observed at low electric field strength as compared to low viscosity ratio drops.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the behavior of a spherical droplet suspended in a confined shear flow and subjected to an external electric field has been investigated. The continuous and dispersed fluids are treated as leaky dielectrics. The subsequent flow has been computed numerically using a low spurious current, multi-component lattice Boltzmann method coupled with a leaky dielectric model. The numerical model has been validated by analyzing droplet deformation due to shear flow and electric field separately. The results obtained are shown to be in good agreement with earlier published analytical solutions. Droplet elongation predicted by our simulations rises with increase in the electric field strength. Beyond a threshold value of electric field, breakup of droplet into smaller droplets is observed. Droplet breakup in case of fluids with equal viscosity is observed at low electric field strength as compared to low viscosity ratio drops.