Sunny Amatya, Mukesh Ghimire, Yi Ren, Zheng Xu, Wenlong Zhang
{"title":"When Shall I Estimate Your Intent? Costs and Benefits of Intent Inference in Multi-Agent Interactions","authors":"Sunny Amatya, Mukesh Ghimire, Yi Ren, Zheng Xu, Wenlong Zhang","doi":"10.23919/ACC53348.2022.9867155","DOIUrl":null,"url":null,"abstract":"This paper addresses incomplete-information dynamic games, where reward parameters of agents are private. Previous studies have shown that online belief update is necessary for deriving equilibrial policies of such games, especially for high-risk games such as vehicle interactions. However, updating beliefs in real time is computationally expensive as it requires continuous computation of Nash equilibria of the sub-games starting from the current states. In this paper, we consider the triggering mechanism of belief update as a policy defined on the agents’ physical and belief states, and propose learning this policy through reinforcement learning (RL). Using a two-vehicle uncontrolled intersection case, we show that intermittent belief update via RL is sufficient for safe interactions, reducing the computation cost of updates by 59% when agents have full observations of physical states. Simulation results also show that the belief update frequency will increase as noise becomes more significant in measurements of the vehicle positions.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"101 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses incomplete-information dynamic games, where reward parameters of agents are private. Previous studies have shown that online belief update is necessary for deriving equilibrial policies of such games, especially for high-risk games such as vehicle interactions. However, updating beliefs in real time is computationally expensive as it requires continuous computation of Nash equilibria of the sub-games starting from the current states. In this paper, we consider the triggering mechanism of belief update as a policy defined on the agents’ physical and belief states, and propose learning this policy through reinforcement learning (RL). Using a two-vehicle uncontrolled intersection case, we show that intermittent belief update via RL is sufficient for safe interactions, reducing the computation cost of updates by 59% when agents have full observations of physical states. Simulation results also show that the belief update frequency will increase as noise becomes more significant in measurements of the vehicle positions.