Tensor-Based Multiple Object Trajectory Indexing and Retrieval

Xiang Ma, F. Bashir, A. Khokhar, D. Schonfeld
{"title":"Tensor-Based Multiple Object Trajectory Indexing and Retrieval","authors":"Xiang Ma, F. Bashir, A. Khokhar, D. Schonfeld","doi":"10.1109/ICME.2006.262468","DOIUrl":null,"url":null,"abstract":"This paper presents novel tensor-based object trajectory modelling techniques for simultaneous representation of multiple objects motion trajectories in a content based indexing and retrieval framework. Three different tensor decomposition techniques-PARAFAC, HOSVD and multiple-SVD-are explored to achieve this goal with the aim of using a minimum set of coefficients and data-dependant bases. These tensor decompositions have been applied to represent full as well as segmented trajectories. Our simulation results show that the PARAFAC-based representation provides higher compression ratio, superior precision-recall metrics, and smaller query processing time compared to the other tensor-based approaches","PeriodicalId":339258,"journal":{"name":"2006 IEEE International Conference on Multimedia and Expo","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2006.262468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents novel tensor-based object trajectory modelling techniques for simultaneous representation of multiple objects motion trajectories in a content based indexing and retrieval framework. Three different tensor decomposition techniques-PARAFAC, HOSVD and multiple-SVD-are explored to achieve this goal with the aim of using a minimum set of coefficients and data-dependant bases. These tensor decompositions have been applied to represent full as well as segmented trajectories. Our simulation results show that the PARAFAC-based representation provides higher compression ratio, superior precision-recall metrics, and smaller query processing time compared to the other tensor-based approaches
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于张量的多目标轨迹索引与检索
本文提出了一种新的基于张量的物体轨迹建模技术,用于在基于内容的索引和检索框架中同时表示多个物体的运动轨迹。为了实现这一目标,研究了三种不同的张量分解技术——parafac、HOSVD和multiple- svd,目的是使用最小的系数集和数据依赖库。这些张量分解已经被应用于表示完整的和分段的轨迹。我们的仿真结果表明,与其他基于张量的方法相比,基于parafac的表示提供了更高的压缩比、更好的查准率指标和更短的查询处理时间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Echo Cancellation in a Channel with Rapidly Varying Gain A Two-Layer Graphical Model for Combined Video Shot and Scene Boundary Detection SCCS: A Scalable Clustered Camera System for Multiple Object Tracking Communicating Via Message Passing Interface Identification and Detection of the Same Scene Based on Flash Light Patterns Bandwidth Estimation in Wireless Lans for Multimedia Streaming Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1