Background spectrum estimation via robust Kalman filtering

F. Chaillan
{"title":"Background spectrum estimation via robust Kalman filtering","authors":"F. Chaillan","doi":"10.1109/PASSIVE.2008.4786983","DOIUrl":null,"url":null,"abstract":"This study deals with the passive SONAR signal background spectral estimation. Practically, this processing is necessary to detect acoustic vibration from the data gathered by that kind of device. These phenomena appear as peaks on the estimated spectra of the collected data. That's why a decision test is applied on the estimated power spectral density. In order to ensure a constant false alarm rate of the detector, one needs to normalize the spectra, i.e. split each spectrum into three parts: the peaks, the background and a superimposed noise. Among the whole different technique developed during the last decades, the processing presented in this paper is the robust Kalman filter, an EM processing where the E step is a Kalman filter step and the M step is a dynamical system parameters estimation. This framework presents the interest to be real time and full automated, and not signal dependent, as long as the system initial guess remains physically realistic. Experimentations on simulated data and real world data are presented.","PeriodicalId":153349,"journal":{"name":"2008 New Trends for Environmental Monitoring Using Passive Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 New Trends for Environmental Monitoring Using Passive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PASSIVE.2008.4786983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study deals with the passive SONAR signal background spectral estimation. Practically, this processing is necessary to detect acoustic vibration from the data gathered by that kind of device. These phenomena appear as peaks on the estimated spectra of the collected data. That's why a decision test is applied on the estimated power spectral density. In order to ensure a constant false alarm rate of the detector, one needs to normalize the spectra, i.e. split each spectrum into three parts: the peaks, the background and a superimposed noise. Among the whole different technique developed during the last decades, the processing presented in this paper is the robust Kalman filter, an EM processing where the E step is a Kalman filter step and the M step is a dynamical system parameters estimation. This framework presents the interest to be real time and full automated, and not signal dependent, as long as the system initial guess remains physically realistic. Experimentations on simulated data and real world data are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于鲁棒卡尔曼滤波的背景谱估计
本文研究了被动声呐信号的背景谱估计问题。实际上,这种处理对于从这种设备收集的数据中检测声振动是必要的。这些现象在收集数据的估计光谱上以峰的形式出现。这就是对估计的功率谱密度进行决策检验的原因。为了保证检测器的虚警率恒定,需要对光谱进行归一化,即将每个光谱分成三部分:峰值、背景和叠加噪声。在过去几十年发展的各种技术中,本文提出的处理是鲁棒卡尔曼滤波,其中E步是卡尔曼滤波步骤,M步是动态系统参数估计的EM处理。只要系统的初始猜测在物理上是真实的,这个框架就表现出实时和完全自动化的兴趣,而不是依赖于信号。在模拟数据和真实数据上进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPS ISAR passive system characterization using Point Spread Function A comparison of interpolation processes: Applications to across-track scanning radiometers Acoustic detection of ice cracking events FFT-based sonar array beamforming without corner turning Flood-fill algorithms used for passive acoustic detection and tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1