{"title":"Neural network modeling of smart nanostructure sensor for electronic nose application","authors":"S. Khaldi, Z. Dibi","doi":"10.1109/ICOSC.2017.7958690","DOIUrl":null,"url":null,"abstract":"Electronic nose applications in environmental monitoring are nowadays of great interest, because of the instruments proven capability of recognizing and discriminating between a variety of different gases and odors using just a small number of sensors. We present in this paper a neural network technique to create smart models for design a smart sensor for electronic nose application. The first one, called a selector, can select exactly the nature of gas detected, the second intelligent model is a compensator, which can automatically compensate the temperature effect on sensor's response and make the response independent of variation of temperature. The third one is corrector; linearize the output response of the sensor. The electronic nose is based on Co-doped SnO2 nanofibers sensor. The method discriminates qualitatively and quantitatively between six gases.","PeriodicalId":113395,"journal":{"name":"2017 6th International Conference on Systems and Control (ICSC)","volume":"573 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2017.7958690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Electronic nose applications in environmental monitoring are nowadays of great interest, because of the instruments proven capability of recognizing and discriminating between a variety of different gases and odors using just a small number of sensors. We present in this paper a neural network technique to create smart models for design a smart sensor for electronic nose application. The first one, called a selector, can select exactly the nature of gas detected, the second intelligent model is a compensator, which can automatically compensate the temperature effect on sensor's response and make the response independent of variation of temperature. The third one is corrector; linearize the output response of the sensor. The electronic nose is based on Co-doped SnO2 nanofibers sensor. The method discriminates qualitatively and quantitatively between six gases.