Neural Network Estimation of Atmospheric Profiles Using AIRS/IASI/AMSU Data in the Presence of Clouds

W. Blackwell, F. Chen, L. G. Jairam, M. Pieper
{"title":"Neural Network Estimation of Atmospheric Profiles Using AIRS/IASI/AMSU Data in the Presence of Clouds","authors":"W. Blackwell, F. Chen, L. G. Jairam, M. Pieper","doi":"10.1117/12.804841","DOIUrl":null,"url":null,"abstract":"A novel statistical method for the retrieval of atmospheric temperature and water vapor profiles has been developed and evaluated with sounding data from the Atmospheric InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU) on the NASA Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI) and AMSU on the EUMETSAT MetOp-A satellite. The present work focuses on the cloud impact on the AIRS and IASI radiances and explores the use of the stochastic cloud clearing methodology together with neural network estimation. A stand-alone statistical algorithm will be presented that operates directly on cloud-impacted AIRS/AMSU and IASI/AMSU data, with no need for a physical cloud clearing process. The performance of this method was evaluated using global (ascending and descending) EOS-Aqua orbits collocated with ECMWF fields for a variety of days throughout 2003, 2004, 2005, and 2006. Over 1,000,000 fields of regard (3×3 arrays of footprints) over ocean and land were used in the study. The method requires significantly less computation than traditional variational retrieval methods, while achieving comparable performance. Retrieval accuracy will be evaluated using ECMWF atmospheric fields as ground truth. The accuracy of the neural network retrieval method will be compared to the accuracy of the AIRS Level 2 (Version 5) retrieval method.","PeriodicalId":237798,"journal":{"name":"IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.804841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

A novel statistical method for the retrieval of atmospheric temperature and water vapor profiles has been developed and evaluated with sounding data from the Atmospheric InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU) on the NASA Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI) and AMSU on the EUMETSAT MetOp-A satellite. The present work focuses on the cloud impact on the AIRS and IASI radiances and explores the use of the stochastic cloud clearing methodology together with neural network estimation. A stand-alone statistical algorithm will be presented that operates directly on cloud-impacted AIRS/AMSU and IASI/AMSU data, with no need for a physical cloud clearing process. The performance of this method was evaluated using global (ascending and descending) EOS-Aqua orbits collocated with ECMWF fields for a variety of days throughout 2003, 2004, 2005, and 2006. Over 1,000,000 fields of regard (3×3 arrays of footprints) over ocean and land were used in the study. The method requires significantly less computation than traditional variational retrieval methods, while achieving comparable performance. Retrieval accuracy will be evaluated using ECMWF atmospheric fields as ground truth. The accuracy of the neural network retrieval method will be compared to the accuracy of the AIRS Level 2 (Version 5) retrieval method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AIRS/IASI/AMSU数据的有云大气廓线神经网络估计
利用美国国家航空航天局(NASA) Aqua卫星上的大气红外测深仪(AIRS)和先进微波测深单元(AMSU)以及欧洲气象卫星metsat MetOp-A卫星上的红外大气探测干涉仪(IASI)和AMSU的探测数据,提出了一种新的反演大气温度和水汽剖面的统计方法。目前的工作重点是云对AIRS和IASI辐射的影响,并探讨了随机云清除方法与神经网络估计的使用。将提出一种独立的统计算法,该算法直接在受云影响的AIRS/AMSU和IASI/AMSU数据上运行,而不需要物理的云清理过程。在2003年、2004年、2005年和2006年的不同日子里,利用全球(上升和下降)EOS-Aqua轨道与ECMWF场相匹配,对该方法的性能进行了评估。研究中使用了海洋和陆地上超过1,000,000个关注领域(3×3足迹阵列)。与传统的变分检索方法相比,该方法的计算量明显减少,但性能相当。将使用ECMWF大气场作为地面真值来评估反演精度。神经网络检索方法的准确性将与AIRS Level 2 (Version 5)检索方法的准确性进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NPOESS Precipitation Retrievals using the ATMS Passive Microwave Spectrometer An Advanced Quantitative Retrieval Algorithm for Aerosol Optical Depth over Land from TERRA and AQUA MODIS Data POLSCAT Ku-band Radar Remote Sensing of Terrestrial Snow Cover SAR Measurement of Ocean Surface Wind Using A Physics Model Validation of Multilayered Cloud Properties using A-Train Satellite Measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1