Extended Asymmetric Velocity Moderation: A reactive strategy for human-safe robot control

G. A. G. Ricardez, Akihiko Yamaguchi, J. Takamatsu, T. Ogasawara
{"title":"Extended Asymmetric Velocity Moderation: A reactive strategy for human-safe robot control","authors":"G. A. G. Ricardez, Akihiko Yamaguchi, J. Takamatsu, T. Ogasawara","doi":"10.1109/ROBIO.2013.6739500","DOIUrl":null,"url":null,"abstract":"Human safety plays a crucial role for the symbiosis between humans and robots. Moreover, it is also important to maintain the robot's efficiency while keeping the human unharmed. With this purpose, we previously developed Asymmetric Velocity Moderation (AVM) as a reactive strategy for human safety. Nevertheless, this original AVM only considers the end-effector's movement. This may lead to overrestrictions of the robot speed when the human is very close and to underestimate human safety by assuming the end-effector is the main source of danger. Therefore, this paper extends AVM by using restrictions based on the velocities of all points on the robot and their corresponding minimum distances to the whole human body. By eliminating overrestrictions without undermining human safety and by considering the whole robot, a more efficient humansafe robot behavior can be obtained. The method proposed in this paper consists of calculating independent restrictions for every point on the robot and choosing the firmest restriction to limit the robot velocity. Simulation experiments using a virtual environment with a human model and a human-sized humanoid robot were performed for the validation of the proposed method, and its efficiency was evaluated using the task completion time of the robot.","PeriodicalId":434960,"journal":{"name":"2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2013.6739500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human safety plays a crucial role for the symbiosis between humans and robots. Moreover, it is also important to maintain the robot's efficiency while keeping the human unharmed. With this purpose, we previously developed Asymmetric Velocity Moderation (AVM) as a reactive strategy for human safety. Nevertheless, this original AVM only considers the end-effector's movement. This may lead to overrestrictions of the robot speed when the human is very close and to underestimate human safety by assuming the end-effector is the main source of danger. Therefore, this paper extends AVM by using restrictions based on the velocities of all points on the robot and their corresponding minimum distances to the whole human body. By eliminating overrestrictions without undermining human safety and by considering the whole robot, a more efficient humansafe robot behavior can be obtained. The method proposed in this paper consists of calculating independent restrictions for every point on the robot and choosing the firmest restriction to limit the robot velocity. Simulation experiments using a virtual environment with a human model and a human-sized humanoid robot were performed for the validation of the proposed method, and its efficiency was evaluated using the task completion time of the robot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展非对称速度调节:人类安全机器人控制的反应策略
人类的安全对于人与机器人的共生至关重要。此外,在不伤害人类的同时保持机器人的效率也很重要。为此,我们之前开发了不对称速度调节(AVM)作为人类安全的反应策略。然而,这个原始的AVM只考虑末端执行器的运动。这可能导致过度限制机器人的速度,当人是非常接近和低估人类的安全,假设末端执行器是主要的危险来源。因此,本文通过基于机器人上所有点的速度及其对应的到整个人体的最小距离的限制来扩展AVM。通过在不损害人类安全的前提下消除过度约束,并考虑整个机器人,可以获得更高效的人类安全机器人行为。本文提出的方法是计算机器人上每个点的独立约束条件,并选择最牢固的约束条件来限制机器人的速度。通过虚拟环境中人体模型和人形机器人的仿真实验,验证了该方法的有效性,并利用机器人的任务完成时间评估了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material classification based on thermal properties — A robot and human evaluation Improving object learning through manipulation and robot self-identification Structure design of a new compliant gripper based on Scott-Russell mechanism A study on the swimming performance and the maneuverability of aRobotic fish with modular design A highly integrated joint controller for a humanoid robot arm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1