A differential evolution with an orthogonal local search

Zhenzhen Dai, Aimin Zhou, Guixu Zhang, Sanyi Jiang
{"title":"A differential evolution with an orthogonal local search","authors":"Zhenzhen Dai, Aimin Zhou, Guixu Zhang, Sanyi Jiang","doi":"10.1109/CEC.2013.6557847","DOIUrl":null,"url":null,"abstract":"Differential evolution (DE) is a kind of evolutionary algorithms (EAs), which are population based heuristic global optimization methods. EAs, including DE, are usually criticized for their slow convergence comparing to traditional optimization methods. How to speed up the EA convergence while keeping its global search ability is still a challenge in the EA community. In this paper, we propose a differential evolution method with an orthogonal local search (OLSDE), which combines orthogonal design (OD) and EA for global optimization. In each generation of OLSDE, a general DE process is used firstly, and then an OD based local search is utilized to improve the quality of some solutions. The proposed OLSDE is applied to a variety of test instances and compared with a basic DE method and an orthogonal based DE method. The experimental results show that OLSDE is promising for dealing with the given continuous test instances.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Differential evolution (DE) is a kind of evolutionary algorithms (EAs), which are population based heuristic global optimization methods. EAs, including DE, are usually criticized for their slow convergence comparing to traditional optimization methods. How to speed up the EA convergence while keeping its global search ability is still a challenge in the EA community. In this paper, we propose a differential evolution method with an orthogonal local search (OLSDE), which combines orthogonal design (OD) and EA for global optimization. In each generation of OLSDE, a general DE process is used firstly, and then an OD based local search is utilized to improve the quality of some solutions. The proposed OLSDE is applied to a variety of test instances and compared with a basic DE method and an orthogonal based DE method. The experimental results show that OLSDE is promising for dealing with the given continuous test instances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有正交局部搜索的差分进化
差分进化算法是一种基于种群的启发式全局优化算法。与传统的优化方法相比,ea(包括DE)通常因收敛速度慢而受到批评。如何在保持其全局搜索能力的同时加快EA的收敛速度仍然是EA社区面临的挑战。本文提出了一种基于正交局部搜索(OLSDE)的差分进化方法,该方法将正交设计(OD)和EA结合起来进行全局优化。在每一代OLSDE中,首先使用通用DE过程,然后使用基于OD的局部搜索来提高部分解的质量。将该方法应用于多种测试实例,并与基本DE方法和基于正交DE方法进行了比较。实验结果表明,该方法能够很好地处理给定的连续测试实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on two-step search based on PSO to improve convergence and diversity for Many-Objective Optimization Problems An evolutionary approach to the multi-objective pickup and delivery problem with time windows A new performance metric for user-preference based multi-objective evolutionary algorithms A new algorithm for reducing metaheuristic design effort Evaluation of gossip Vs. broadcast as communication strategies for multiple swarms solving MaOPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1