{"title":"Adaptive rounding operator for efficient Wyner-Ziv video coding","authors":"Jeffrey J. Micallef, R. Farrugia, C. J. Debono","doi":"10.1109/VCIP.2013.6706368","DOIUrl":null,"url":null,"abstract":"The Distributed Video Coding (DVC) paradigm can theoretically reach the same coding efficiencies of predictive block-based video coding schemes, like H.264/AVC. However, current DVC architectures are still far from this ideal performance. This is mainly attributed to inaccuracies in the Side Information (SI) predicted at the decoder. The work in this paper presents a coding scheme which tries to avoid mismatch in the SI predictions caused by small variations in light intensity. Using the appropriate rounding operator for every coefficient, the proposed method significantly reduces the correlation noise between the Wyner-Ziv (WZ) frame and the corresponding SI, achieving higher coding efficiencies. Experimental results demonstrate that the average Peak Signal-to-Noise Ratio (PSNR) is improved by up to 0.56dB relative to the DISCOVER codec.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Distributed Video Coding (DVC) paradigm can theoretically reach the same coding efficiencies of predictive block-based video coding schemes, like H.264/AVC. However, current DVC architectures are still far from this ideal performance. This is mainly attributed to inaccuracies in the Side Information (SI) predicted at the decoder. The work in this paper presents a coding scheme which tries to avoid mismatch in the SI predictions caused by small variations in light intensity. Using the appropriate rounding operator for every coefficient, the proposed method significantly reduces the correlation noise between the Wyner-Ziv (WZ) frame and the corresponding SI, achieving higher coding efficiencies. Experimental results demonstrate that the average Peak Signal-to-Noise Ratio (PSNR) is improved by up to 0.56dB relative to the DISCOVER codec.