{"title":"The metabolism of organochlorine compound by microsomal enzymes of the shag (Phalacrocorax aristotelis).","authors":"C H Walker, A C Craven, M Kurukgy","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>1. The activities of microsomal enzymes of adult male shags (Phalacrocorax aristotelis) towards the organochlorine substrates HHDN, HCE and Heom were compred with those of microsomal enzymes of the adult male Wistar rat. 2. Liver homogenates showed similar epoxide hydrase activity to kidney homogenates in the shag, but in the rat liver preparations was much more active than the kidney preparation. 3. Liver microsomes of the shag showed smaller than 8% of the epoxide hydrase activity and smaller than 14% of the hydroxylating capacity of liver microsomes from the rat. 4. The relatively low activity of these enzymes is probably the main reason why the shag has been found to contain relatively high levels of dieldrin in ecological studies.</p>","PeriodicalId":75826,"journal":{"name":"Environmental physiology & biochemistry","volume":"5 1","pages":"58-64"},"PeriodicalIF":0.0000,"publicationDate":"1975-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental physiology & biochemistry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
1. The activities of microsomal enzymes of adult male shags (Phalacrocorax aristotelis) towards the organochlorine substrates HHDN, HCE and Heom were compred with those of microsomal enzymes of the adult male Wistar rat. 2. Liver homogenates showed similar epoxide hydrase activity to kidney homogenates in the shag, but in the rat liver preparations was much more active than the kidney preparation. 3. Liver microsomes of the shag showed smaller than 8% of the epoxide hydrase activity and smaller than 14% of the hydroxylating capacity of liver microsomes from the rat. 4. The relatively low activity of these enzymes is probably the main reason why the shag has been found to contain relatively high levels of dieldrin in ecological studies.