Natural Language Video Moment Localization Through Query-Controlled Temporal Convolution

Lingyu Zhang, R. Radke
{"title":"Natural Language Video Moment Localization Through Query-Controlled Temporal Convolution","authors":"Lingyu Zhang, R. Radke","doi":"10.1109/WACV51458.2022.00258","DOIUrl":null,"url":null,"abstract":"The goal of natural language video moment localization is to locate a short segment of a long, untrimmed video that corresponds to a description presented as natural text. The description may contain several pieces of key information, including subjects/objects, sequential actions, and locations. Here, we propose a novel video moment localization framework based on the convolutional response between multimodal signals, i.e., the video sequence, the text query, and subtitles for the video if they are available. We emphasize the effect of the language sequence as a query about the video content, by converting the query sentence into a boundary detector with a filter kernel size and stride. We convolve the video sequence with the query detector to locate the start and end boundaries of the target video segment. When subtitles are available, we blend the boundary heatmaps from the visual and subtitle branches together using an LSTM to capture asynchronous dependencies across two modalities in the video. We perform extensive experiments on the TVR, Charades-STA, and TACoS benchmark datasets, demonstrating that our model achieves state-of-the-art results on all three.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"65 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The goal of natural language video moment localization is to locate a short segment of a long, untrimmed video that corresponds to a description presented as natural text. The description may contain several pieces of key information, including subjects/objects, sequential actions, and locations. Here, we propose a novel video moment localization framework based on the convolutional response between multimodal signals, i.e., the video sequence, the text query, and subtitles for the video if they are available. We emphasize the effect of the language sequence as a query about the video content, by converting the query sentence into a boundary detector with a filter kernel size and stride. We convolve the video sequence with the query detector to locate the start and end boundaries of the target video segment. When subtitles are available, we blend the boundary heatmaps from the visual and subtitle branches together using an LSTM to capture asynchronous dependencies across two modalities in the video. We perform extensive experiments on the TVR, Charades-STA, and TACoS benchmark datasets, demonstrating that our model achieves state-of-the-art results on all three.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于查询控制时间卷积的自然语言视频时刻定位
自然语言视频时刻定位的目标是定位一个长视频的短片段,它与作为自然文本呈现的描述相对应。描述可能包含几条关键信息,包括主题/对象、顺序操作和位置。在这里,我们提出了一种新的基于多模态信号(即视频序列、文本查询和视频字幕(如果有的话))之间的卷积响应的视频矩定位框架。我们通过将查询语句转换为具有过滤核大小和步幅的边界检测器来强调语言序列作为视频内容查询的效果。我们将视频序列与查询检测器进行卷积,以定位目标视频段的开始和结束边界。当字幕可用时,我们使用LSTM将视觉分支和字幕分支的边界热图混合在一起,以捕获视频中两种模式之间的异步依赖关系。我们在TVR、Charades-STA和TACoS基准数据集上进行了广泛的实验,证明我们的模型在这三个数据集上都取得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Learning for Human Sensing Using Radio Signals AirCamRTM: Enhancing Vehicle Detection for Efficient Aerial Camera-based Road Traffic Monitoring QUALIFIER: Question-Guided Self-Attentive Multimodal Fusion Network for Audio Visual Scene-Aware Dialog Transductive Weakly-Supervised Player Detection using Soccer Broadcast Videos Inpaint2Learn: A Self-Supervised Framework for Affordance Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1