A Query Framework for Massive RDF Graph Data in Pay-As-You-Go Fashion

Xiaolong Liu, Ying Pan
{"title":"A Query Framework for Massive RDF Graph Data in Pay-As-You-Go Fashion","authors":"Xiaolong Liu, Ying Pan","doi":"10.1109/cniot55862.2022.00028","DOIUrl":null,"url":null,"abstract":"In the context of big data, faster and more accurate methods are required for RDF data retrieval. The current research on querying RDF graph data has made some progress, but it has a certain delay and high up-front cost. Given the above shortcomings, we propose a more efficient framework for querying RDF graph data based on the pay-as-you-go (PAYG) approach. Firstly, we annotate the evolution process of data content and association and then construct the evolution update operation set and dynamic incremental graph to describe the dynamic data. Secondly, we design a query algorithm supporting the best-effort query, which returns the data information with the highest similarity to the user, thus improving the search efficiency. Finally, we apply the investment income theory and information retrieval evaluation methods to construct an evaluation mechanism for PAYG RDF data management.","PeriodicalId":251734,"journal":{"name":"2022 3rd International Conference on Computing, Networks and Internet of Things (CNIOT)","volume":"35 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Computing, Networks and Internet of Things (CNIOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cniot55862.2022.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of big data, faster and more accurate methods are required for RDF data retrieval. The current research on querying RDF graph data has made some progress, but it has a certain delay and high up-front cost. Given the above shortcomings, we propose a more efficient framework for querying RDF graph data based on the pay-as-you-go (PAYG) approach. Firstly, we annotate the evolution process of data content and association and then construct the evolution update operation set and dynamic incremental graph to describe the dynamic data. Secondly, we design a query algorithm supporting the best-effort query, which returns the data information with the highest similarity to the user, thus improving the search efficiency. Finally, we apply the investment income theory and information retrieval evaluation methods to construct an evaluation mechanism for PAYG RDF data management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海量RDF图数据的现收现付查询框架
在大数据环境下,对RDF数据检索需要更快、更准确的方法。目前对RDF图数据查询的研究取得了一定的进展,但存在一定的延迟和较高的前期成本。鉴于上述缺点,我们提出了一种更有效的框架,用于基于现收现付(pay-as-you-go, PAYG)方法查询RDF图数据。首先对数据内容和关联的演化过程进行标注,然后构建演化更新操作集和动态增量图来描述动态数据。其次,设计了一种支持尽力而为查询的查询算法,该算法返回与用户相似度最高的数据信息,从而提高了搜索效率。最后,运用投资收益理论和信息检索评价方法,构建了PAYG RDF数据管理的评价机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Power Grid Observability under Finite Blocklength Antenna On/Off Strategy for Massive MIMO Based on User Behavior Prediction A Residual Neural Network for Modulation Recognition of 24 kinds of Signals Intelligence Serviced Task-driven Network Architecture Novel Adaptive DNN Partitioning Method Based on Image-Stream Pipeline Inference between the Edge and Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1