Law Text Clustering Based on Referential Relations

Biao Fan, Tao Liu, H. Hu, Xiaoyong Du
{"title":"Law Text Clustering Based on Referential Relations","authors":"Biao Fan, Tao Liu, H. Hu, Xiaoyong Du","doi":"10.1109/ChinaGrid.2010.22","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method to cluster law texts based on referential relation of laws. We extract law entities (an entity represents a law) and their referential relation from law texts. Then SimRank algorithm is applied to calculate law entity’s similarity through referential relation and law clustering is carried out based on the SimRank similarity. This is the first time to apply SimRank algorithm in the domain of Law and use it to carry out text clustering. Prototype and experiments show that our solution is feasible. We also publish the extracted data as Linked Law Data with RDF data model, which forms the first open semantic web database in Law domain. Linked Law Data enables user to access law data with rich data links and query web data by application interface of Semantic Web.","PeriodicalId":429657,"journal":{"name":"2010 Fifth Annual ChinaGrid Conference","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth Annual ChinaGrid Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaGrid.2010.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a new method to cluster law texts based on referential relation of laws. We extract law entities (an entity represents a law) and their referential relation from law texts. Then SimRank algorithm is applied to calculate law entity’s similarity through referential relation and law clustering is carried out based on the SimRank similarity. This is the first time to apply SimRank algorithm in the domain of Law and use it to carry out text clustering. Prototype and experiments show that our solution is feasible. We also publish the extracted data as Linked Law Data with RDF data model, which forms the first open semantic web database in Law domain. Linked Law Data enables user to access law data with rich data links and query web data by application interface of Semantic Web.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参考关系的法律文本聚类
本文提出了一种基于法律参考关系的法律文本聚类方法。我们从法律文本中提取法律实体(一个实体代表一部法律)及其指称关系。然后应用simmrank算法通过引用关系计算法律实体的相似度,并基于simmrank相似度进行法律聚类。这是第一次将simmrank算法应用到法学领域,并用它来进行文本聚类。样机和实验表明,该方案是可行的。并采用RDF数据模型将提取的数据发布为关联法律数据,形成了法律领域第一个开放的语义web数据库。关联法律数据使用户能够通过丰富的数据链接访问法律数据,并通过语义web的应用界面查询web数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration of Task Scheduling with Replica Placement in Data Grid for Limited Disk Space of Resources Study on Process of Network Traffic Classification Using Machine Learning A Semantic Web Service Discovery Model Based on Pastry System Research on the Real-Time of the Perception between Objects in Internet of Things Based on Image Enabling Cloud Storage to Support Traditional Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1