Charlotte Zimmerman, Andrew McCarty, Suzanne White Brahmia, Alexis Olsho, M. De Cock, A. Boudreaux, Trevor I. Smith, Philip Eaton
{"title":"Assessing physics quantitative literacy in algebra-based physics: lessons learned","authors":"Charlotte Zimmerman, Andrew McCarty, Suzanne White Brahmia, Alexis Olsho, M. De Cock, A. Boudreaux, Trevor I. Smith, Philip Eaton","doi":"10.1119/perc.2022.pr.zimmerman","DOIUrl":null,"url":null,"abstract":"Physics quantitative literacy (PQL)—applying familiar mathematics in novel ways in the context of physics— is ubiquitous across physics classrooms. The Physics Inventory for Quantitative Literacy, or PIQL, is a recently published reasoning inventory that can be used to assess PQL from calculus-based introductory physics through upper division courses (White Brahmia et al. 2021). There remains a need, however, for assessment of quantitative reasoning at the algebra-based level which includes not only algebra-based college courses but also pre-college physics courses. We present recent work adapting the PIQL to an algebra-based context towards developing the GERQN—the Generalized Equation-based Reasoning inventory for Quantities and Negativity. We report lessons learned from our efforts to adapt items from the calculus-based PIQL to the algebra-based GERQN, and provide examples of how items were revised to be within students proximal zone. We also report on our experience translating the GERQN into Flemish as part of a larger, on-going research project, and what we learned about language accessibility for native and non-native English speakers alike for developing assessment items, curricular materials, and when speaking with students.","PeriodicalId":253382,"journal":{"name":"2022 Physics Education Research Conference Proceedings","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Physics Education Research Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1119/perc.2022.pr.zimmerman","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Physics quantitative literacy (PQL)—applying familiar mathematics in novel ways in the context of physics— is ubiquitous across physics classrooms. The Physics Inventory for Quantitative Literacy, or PIQL, is a recently published reasoning inventory that can be used to assess PQL from calculus-based introductory physics through upper division courses (White Brahmia et al. 2021). There remains a need, however, for assessment of quantitative reasoning at the algebra-based level which includes not only algebra-based college courses but also pre-college physics courses. We present recent work adapting the PIQL to an algebra-based context towards developing the GERQN—the Generalized Equation-based Reasoning inventory for Quantities and Negativity. We report lessons learned from our efforts to adapt items from the calculus-based PIQL to the algebra-based GERQN, and provide examples of how items were revised to be within students proximal zone. We also report on our experience translating the GERQN into Flemish as part of a larger, on-going research project, and what we learned about language accessibility for native and non-native English speakers alike for developing assessment items, curricular materials, and when speaking with students.