Scalable sentiment classification across multiple Dark Web Forums

David Zimbra, Hsinchun Chen
{"title":"Scalable sentiment classification across multiple Dark Web Forums","authors":"David Zimbra, Hsinchun Chen","doi":"10.1109/ISI.2012.6284095","DOIUrl":null,"url":null,"abstract":"This study examines several approaches to sentiment classification in the Dark Web Forum Portal, and opportunities to transfer classifiers and text features across multiple forums to improve scalability and performance. Although sentiment classifiers typically perform poorly when transferred across domains, experimentation reveals the devised approaches offer performance equivalent to the traditional forum-specific approach in classification in an unknown domain. Furthermore, incorporating the text features identified as significant indicators of sentiment in other forums can greatly improve the classification accuracy of the traditional forum-specific approach.","PeriodicalId":199734,"journal":{"name":"2012 IEEE International Conference on Intelligence and Security Informatics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2012.6284095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This study examines several approaches to sentiment classification in the Dark Web Forum Portal, and opportunities to transfer classifiers and text features across multiple forums to improve scalability and performance. Although sentiment classifiers typically perform poorly when transferred across domains, experimentation reveals the devised approaches offer performance equivalent to the traditional forum-specific approach in classification in an unknown domain. Furthermore, incorporating the text features identified as significant indicators of sentiment in other forums can greatly improve the classification accuracy of the traditional forum-specific approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨多个暗网论坛的可扩展情感分类
本研究考察了暗网论坛门户网站中情感分类的几种方法,以及跨多个论坛转移分类器和文本特征以提高可扩展性和性能的机会。虽然情感分类器在跨领域转移时通常表现不佳,但实验表明,所设计的方法在未知领域的分类中提供与传统论坛特定方法相当的性能。此外,结合其他论坛中确定为重要情绪指标的文本特征可以大大提高传统论坛特定方法的分类准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting criminal networks: SNA models are compared to proprietary models Securing cyberspace: Identifying key actors in hacker communities Emergency decision support using an agent-based modeling approach Payment card fraud: Challenges and solutions Extracting action knowledge in security informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1