Gravitational search algorithm with linearly decreasing gravitational constant for parameter estimation of photovoltaic cells

A. R. Jordehi
{"title":"Gravitational search algorithm with linearly decreasing gravitational constant for parameter estimation of photovoltaic cells","authors":"A. R. Jordehi","doi":"10.1109/CEC.2017.7969293","DOIUrl":null,"url":null,"abstract":"Due to undeniable environmental, economical and technical reasons, renewable energy-based power generation in electric power systems is continually increasing. Among renewables, photovoltaic (PV) power generation is a viable and attractive choice. For modeling photovoltaic systems, accurate modeling of PV cells is a must. PV cells are often modeled as single diode or double diode models. The process of estimating circuit model parameters of PV cells based on datasheet information or experimental I–V measurements is called PV cell parameter estimation problem and is being frequently researched in the last three decades. The research effort is being put to achieve more accurate circuit model parameters. In this paper, gravitational search algorithm (GSA) with linearly decreasing gravitational constant is proposed for solving PV cell parameter estimation problem. The results of application of the proposed GSA to PV cell parameter estimation problem vividly show its outperformance over GSA with constant gravitational constant, GSA with exponentially decreasing gravitational constant, genetic algorithm, evolutionary programming and Newton algorithm.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Due to undeniable environmental, economical and technical reasons, renewable energy-based power generation in electric power systems is continually increasing. Among renewables, photovoltaic (PV) power generation is a viable and attractive choice. For modeling photovoltaic systems, accurate modeling of PV cells is a must. PV cells are often modeled as single diode or double diode models. The process of estimating circuit model parameters of PV cells based on datasheet information or experimental I–V measurements is called PV cell parameter estimation problem and is being frequently researched in the last three decades. The research effort is being put to achieve more accurate circuit model parameters. In this paper, gravitational search algorithm (GSA) with linearly decreasing gravitational constant is proposed for solving PV cell parameter estimation problem. The results of application of the proposed GSA to PV cell parameter estimation problem vividly show its outperformance over GSA with constant gravitational constant, GSA with exponentially decreasing gravitational constant, genetic algorithm, evolutionary programming and Newton algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性减小引力常数的光伏电池参数估计的引力搜索算法
由于不可否认的环境、经济和技术原因,电力系统中基于可再生能源的发电量正在不断增加。在可再生能源中,光伏发电是一种可行且有吸引力的选择。为了对光伏系统进行建模,必须对光伏电池进行精确的建模。光伏电池通常建模为单二极管或双二极管模型。基于数据表信息或实验I-V测量值估计PV电池电路模型参数的过程称为PV电池参数估计问题,是近三十年来研究较多的问题。研究工作正在努力实现更精确的电路模型参数。本文提出了一种线性减小引力常数的引力搜索算法(GSA)来求解PV电池参数估计问题。将该方法应用于光伏电池参数估计问题的结果表明,该方法优于重力常数不变的GSA、重力常数指数递减的GSA、遗传算法、进化规划算法和牛顿算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge-based particle swarm optimization for PID controller tuning Local Optima Networks of the Permutation Flowshop Scheduling Problem: Makespan vs. total flow time Information core optimization using Evolutionary Algorithm with Elite Population in recommender systems New heuristics for multi-objective worst-case optimization in evidence-based robust design Bus Routing for emergency evacuations: The case of the Great Fire of Valparaiso
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1