Algorithms for Batch Matrix Factorization with Application to Structure-from-Motion

J. Tardif, A. Bartoli, Martin Trudeau, Nicolas Guilbert, S. Roy
{"title":"Algorithms for Batch Matrix Factorization with Application to Structure-from-Motion","authors":"J. Tardif, A. Bartoli, Martin Trudeau, Nicolas Guilbert, S. Roy","doi":"10.1109/CVPR.2007.383062","DOIUrl":null,"url":null,"abstract":"Matrix factorization is a key component for solving several computer vision problems. It is particularly challenging in the presence of missing or erroneous data, which often arise in structure-from-motion. We propose batch algorithms for matrix factorization. They are based on closure and basis constraints, that are used either on the cameras or the structure, leading to four possible algorithms. The constraints are robustly computed from complete measurement sub-matrices with e.g. random data sampling. The cameras and 3D structure are then recovered through linear least squares. Prior information about the scene such as identical camera positions or orientations, smooth camera trajectory, known 3D points and coplanarity of some 3D points can be directly incorporated. We demonstrate our algorithms on challenging image sequences with tracking error and more than 95% missing data.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"30 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Matrix factorization is a key component for solving several computer vision problems. It is particularly challenging in the presence of missing or erroneous data, which often arise in structure-from-motion. We propose batch algorithms for matrix factorization. They are based on closure and basis constraints, that are used either on the cameras or the structure, leading to four possible algorithms. The constraints are robustly computed from complete measurement sub-matrices with e.g. random data sampling. The cameras and 3D structure are then recovered through linear least squares. Prior information about the scene such as identical camera positions or orientations, smooth camera trajectory, known 3D points and coplanarity of some 3D points can be directly incorporated. We demonstrate our algorithms on challenging image sequences with tracking error and more than 95% missing data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
批矩阵分解算法及其在运动构造中的应用
矩阵分解是解决许多计算机视觉问题的关键组成部分。在运动结构中经常出现数据缺失或错误的情况下,这尤其具有挑战性。我们提出了矩阵分解的批处理算法。它们基于闭包和基约束,用于摄像机或结构,导致四种可能的算法。约束由完整测量子矩阵鲁棒计算,例如随机数据采样。然后通过线性最小二乘法恢复相机和三维结构。可以直接结合场景的先验信息,如相同的相机位置或方向,平滑的相机轨迹,已知的3D点和一些3D点的共平面性。我们在具有跟踪误差和超过95%缺失数据的具有挑战性的图像序列上演示了我们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1