A knowledge-based approach to behavior decision in intelligent vehicles

Andreas D. Lattner, Jan D. Gehrke, I. Timm, O. Herzog
{"title":"A knowledge-based approach to behavior decision in intelligent vehicles","authors":"Andreas D. Lattner, Jan D. Gehrke, I. Timm, O. Herzog","doi":"10.1109/IVS.2005.1505147","DOIUrl":null,"url":null,"abstract":"Recent advances in the field of intelligent vehicles have shown that it is possible nowadays to provide the driver with useful assistance systems, or even letting a car drive autonomously over long distances on highways. Usually these approaches are on a rather quantitative level. A knowledge-based approach as presented here has the advantage of a better comprehensibility and allows for formulating and using common sense knowledge and traffic rules while reasoning. In our approach a knowledge base is the central component for higher-level functionality. A qualitative mapping module abstracts from the quantitative data and stores symbolic facts in the knowledge base. The knowledge-based approach allows for easily integrating and adjusting background knowledge. Higher-level modules can query the knowledge base in order to evaluate the situation and decide what actions to perform. For the evaluation of the approach a prototype was developed in order to simulate traffic scenarios. In experiments behavior decision was applied for controlling the vehicle and its gaze.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Recent advances in the field of intelligent vehicles have shown that it is possible nowadays to provide the driver with useful assistance systems, or even letting a car drive autonomously over long distances on highways. Usually these approaches are on a rather quantitative level. A knowledge-based approach as presented here has the advantage of a better comprehensibility and allows for formulating and using common sense knowledge and traffic rules while reasoning. In our approach a knowledge base is the central component for higher-level functionality. A qualitative mapping module abstracts from the quantitative data and stores symbolic facts in the knowledge base. The knowledge-based approach allows for easily integrating and adjusting background knowledge. Higher-level modules can query the knowledge base in order to evaluate the situation and decide what actions to perform. For the evaluation of the approach a prototype was developed in order to simulate traffic scenarios. In experiments behavior decision was applied for controlling the vehicle and its gaze.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于知识的智能车辆行为决策方法
智能汽车领域的最新进展表明,现在有可能为驾驶员提供有用的辅助系统,甚至让汽车在高速公路上长距离自动驾驶。通常这些方法都是定量的。本文所介绍的基于知识的方法具有更好的可理解性,并且允许在推理时制定和使用常识性知识和交通规则。在我们的方法中,知识库是高级功能的中心组件。定性映射模块对定量数据进行抽象,并在知识库中存储符号事实。基于知识的方法允许轻松集成和调整背景知识。更高级别的模块可以查询知识库,以便评估情况并决定执行什么操作。为了评估该方法,开发了一个原型以模拟交通场景。在实验中,行为决策被用于控制车辆及其注视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A statistical based UWB multipath channel model for the indoor environments WPAN applications Visual-based assistance for electric vehicle driving Cooperative driving and lane changing at blind crossings Vehicle localization on a digital map using particles filtering Past, current and future on nonlinear dynamics and noise origins of non-smooth gear transmission dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1