{"title":"Speech based emotion classification","authors":"T. Nwe, Foo Say Wei, Liyanage, De Silva","doi":"10.1109/TENCON.2001.949600","DOIUrl":null,"url":null,"abstract":"In this paper, a speech based emotion classification method is presented. Six basic human emotions including anger, dislike, fear, happiness, sadness and surprise are investigated. The recognizer presented in this paper is based on the discrete hidden Markov model and a novel feature vector based on mel frequency short time speech power coefficients is proposed. A universal codebook is constructed based on emotions under observation for each experiment. The databases consist of 90 emotional utterances each from two speakers. Several experiments including ungrouped emotion classification and grouped emotion classification are conducted. For the ungrouped emotion classification, an average accuracy of 72.22% and 60% are obtained respectively for utterances of the two speakers. For grouped emotion classification, higher accuracy of 94.44% and 70% are achieved.","PeriodicalId":358168,"journal":{"name":"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2001.949600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

Abstract

In this paper, a speech based emotion classification method is presented. Six basic human emotions including anger, dislike, fear, happiness, sadness and surprise are investigated. The recognizer presented in this paper is based on the discrete hidden Markov model and a novel feature vector based on mel frequency short time speech power coefficients is proposed. A universal codebook is constructed based on emotions under observation for each experiment. The databases consist of 90 emotional utterances each from two speakers. Several experiments including ungrouped emotion classification and grouped emotion classification are conducted. For the ungrouped emotion classification, an average accuracy of 72.22% and 60% are obtained respectively for utterances of the two speakers. For grouped emotion classification, higher accuracy of 94.44% and 70% are achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语音的情感分类
本文提出了一种基于语音的情感分类方法。六种基本的人类情感包括愤怒、厌恶、恐惧、快乐、悲伤和惊讶。本文基于离散隐马尔可夫模型,提出了一种基于频率短时间语音功率系数的特征向量。基于每个实验中观察到的情绪,构建了一个通用密码本。该数据库由来自两名说话者的90段情感话语组成。进行了非分组情感分类和分组情感分类实验。对于未分组的情感分类,两个人的话语平均准确率分别为72.22%和60%。对于分组情绪分类,准确率分别达到94.44%和70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of a fault tolerant and high performance motor drive for critical applications An optical fiber feeder system and performance for cellular microcell 800 MHz CDMA systems Reactive web policing based on self-organizing maps Features preserving filters using fuzzy Kohonen clustering network in detection of impulse noise Reliability modeling incorporating error processes for Internet-distributed software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1