A statistical adaptive algorithm for dust image enhancement and restoration

Madallah Alruwaili, L. Gupta
{"title":"A statistical adaptive algorithm for dust image enhancement and restoration","authors":"Madallah Alruwaili, L. Gupta","doi":"10.1109/EIT.2015.7293354","DOIUrl":null,"url":null,"abstract":"Analyses of images acquired in dusty environments show that the images tend to have noise, blur, small dynamic ranges, low contrast, diminished blue components, and high red components. The goal of this paper is to develop a strategy to enhance such dusty images using a sequence of image processing steps. A statistical adaptive algorithm consisting of image restoration using the Wiener filter, contrast stretching using the RGB color model, intensity stretching using the HSI color model, and color cast removal using color balance, is introduced. Enhancement experiments are conducted on real dusty images and it is shown that the strategy is quite effective in enhancing dusty images. Furthermore the results are superior to those obtained through histogram equalization, gray world, and white patch algorithms. In addition, the complexity of the proposed algorithm is very low thus making it attractive for real time-image processing.","PeriodicalId":415614,"journal":{"name":"2015 IEEE International Conference on Electro/Information Technology (EIT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2015.7293354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Analyses of images acquired in dusty environments show that the images tend to have noise, blur, small dynamic ranges, low contrast, diminished blue components, and high red components. The goal of this paper is to develop a strategy to enhance such dusty images using a sequence of image processing steps. A statistical adaptive algorithm consisting of image restoration using the Wiener filter, contrast stretching using the RGB color model, intensity stretching using the HSI color model, and color cast removal using color balance, is introduced. Enhancement experiments are conducted on real dusty images and it is shown that the strategy is quite effective in enhancing dusty images. Furthermore the results are superior to those obtained through histogram equalization, gray world, and white patch algorithms. In addition, the complexity of the proposed algorithm is very low thus making it attractive for real time-image processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种粉尘图像增强与恢复的统计自适应算法
对多尘环境下获取的图像进行分析,发现图像容易出现噪声、模糊、动态范围小、对比度低、蓝色成分减少、红色成分增加等问题。本文的目标是开发一种策略,以提高这种尘埃图像使用一系列的图像处理步骤。介绍了一种基于维纳滤波的图像复原、基于RGB色彩模型的对比度拉伸、基于HSI色彩模型的强度拉伸和基于色彩平衡的偏色去除的统计自适应算法。对真实含尘图像进行了增强实验,结果表明该方法对含尘图像的增强效果良好。该算法的结果优于直方图均衡化、灰世界和白补丁算法。此外,该算法的复杂度很低,因此对实时图像处理具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space time block code for four time slots and two transmit antennas Social routing: A novel routing protocol for delay tolerant network based on dynamic connectivity Radiation performance and Specific Absorption Rate (SAR) analysis of a compact dual band balanced antenna Design of half bridge LLC resonant converter using synchronous rectifier Frame distance array algorithm parameter tune-up for TIMIT corpus automatic speech segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1