Performance Evaluation and Hybrid Application of the Greedy and Predictive UAV Trajectory Optimization Methods for Localizing a Target Mobile Device

Halim Lee, Jiwon Seo
{"title":"Performance Evaluation and Hybrid Application of the Greedy and Predictive UAV Trajectory Optimization Methods for Localizing a Target Mobile Device","authors":"Halim Lee, Jiwon Seo","doi":"10.33012/2023.18666","DOIUrl":null,"url":null,"abstract":"This study investigates unmanned aerial vehicle (UAV) trajectory planning strategies for localizing a target mobile device in emergency situations. The global navigation satellite system (GNSS)-based accurate position information of a target mobile device in an emergency may not be always available to first responders. For example, 1) GNSS positioning accuracy may be degraded in harsh signal environments and 2) in countries where emergency positioning service is not mandatory, some mobile devices may not report their locations. Under the cases mentioned above, one way to find the target mobile device is to use UAVs. Dispatched UAVs may search the target directly on the emergency site by measuring the strength of the signal (e.g., LTE wireless communication signal) from the target mobile device. To accurately localize the target mobile device in the shortest time possible, UAVs should fly in the most efficient way possible. The two popular trajectory optimization strategies of UAVs are greedy and predictive approaches. However, the research on localization performances of the two approaches has been evaluated only under favorable settings (i.e., under good UAV geometries and small received signal strength (RSS) errors); more realistic scenarios still remain unexplored. In this study, we compare the localization performance of the greedy and predictive approaches under realistic RSS errors (i.e., up to 6 dB according to the ITU-R channel model).","PeriodicalId":261056,"journal":{"name":"Proceedings of the 2023 International Technical Meeting of The Institute of Navigation","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Technical Meeting of The Institute of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/2023.18666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study investigates unmanned aerial vehicle (UAV) trajectory planning strategies for localizing a target mobile device in emergency situations. The global navigation satellite system (GNSS)-based accurate position information of a target mobile device in an emergency may not be always available to first responders. For example, 1) GNSS positioning accuracy may be degraded in harsh signal environments and 2) in countries where emergency positioning service is not mandatory, some mobile devices may not report their locations. Under the cases mentioned above, one way to find the target mobile device is to use UAVs. Dispatched UAVs may search the target directly on the emergency site by measuring the strength of the signal (e.g., LTE wireless communication signal) from the target mobile device. To accurately localize the target mobile device in the shortest time possible, UAVs should fly in the most efficient way possible. The two popular trajectory optimization strategies of UAVs are greedy and predictive approaches. However, the research on localization performances of the two approaches has been evaluated only under favorable settings (i.e., under good UAV geometries and small received signal strength (RSS) errors); more realistic scenarios still remain unexplored. In this study, we compare the localization performance of the greedy and predictive approaches under realistic RSS errors (i.e., up to 6 dB according to the ITU-R channel model).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贪心与预测无人机轨迹优化方法在目标移动设备定位中的性能评估与混合应用
本研究探讨在紧急情况下,无人机(UAV)定位目标移动装置的轨迹规划策略。在紧急情况下,第一响应者不一定总能获得基于全球导航卫星系统(GNSS)的目标移动设备的准确位置信息。例如,1)在恶劣的信号环境中,全球导航卫星系统的定位精度可能会降低;2)在没有强制要求提供紧急定位服务的国家,一些移动设备可能不会报告其位置。在上述情况下,找到目标移动设备的一种方法是使用无人机。被派遣的无人机可以通过测量来自目标移动设备的信号(例如LTE无线通信信号)的强度,直接在应急站点上搜索目标。为了在尽可能短的时间内准确定位目标移动设备,无人机应该以尽可能高效的方式飞行。目前常用的两种无人机轨迹优化策略是贪心优化和预测优化。然而,这两种方法的定位性能研究仅在有利条件下进行了评估(即良好的无人机几何形状和较小的接收信号强度(RSS)误差);更现实的情况仍有待探索。在本研究中,我们比较了贪婪和预测方法在实际RSS误差(即根据ITU-R信道模型高达6 dB)下的定位性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low Earth Orbit Navigation System (LEONS): Scalable GNSS-Independent Time Transfer and Positioning for Space Users Satellite Clock and Ephemeris Error Bounding Characterization for Galileo and Estimated CNAV GNSS Constellation Performance Using ARAIM with Inclined Geosynchronous Satellite and Low-Earth-Orbit Satellite Augmentation Comparison of CRPA Direction of Arrival Methods on Post Correlated GNSS Signals for Solution Authentication and Spoofing Detection Adaptive Fusion of Navigation Solutions from Measurement Subsets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1