Platform Generation for Edge AI Devices with Custom Hardware Accelerators

Leon Hielscher, Alexander Bloeck, A. Viehl, Sebastian Reiter, Marc Staiger, O. Bringmann
{"title":"Platform Generation for Edge AI Devices with Custom Hardware Accelerators","authors":"Leon Hielscher, Alexander Bloeck, A. Viehl, Sebastian Reiter, Marc Staiger, O. Bringmann","doi":"10.1109/INDIN45523.2021.9557519","DOIUrl":null,"url":null,"abstract":"In recent years artificial neural networks (NNs) have been at the center of research on data processing. However, their high computational demand often prohibits deployment on resource-constrained Industrial IoT Systems. Custom hardware accelerators can enable real-time NN processing on small-scale edge devices but are generally hard to develop and integrate. In this paper we present a hardware generation approach to rapidly create, test, and deploy entire SoC platforms with application-specific NN hardware accelerators. The feasibility of the approach is demonstrated by the generation of a condition monitoring system for high-speed valves.","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years artificial neural networks (NNs) have been at the center of research on data processing. However, their high computational demand often prohibits deployment on resource-constrained Industrial IoT Systems. Custom hardware accelerators can enable real-time NN processing on small-scale edge devices but are generally hard to develop and integrate. In this paper we present a hardware generation approach to rapidly create, test, and deploy entire SoC platforms with application-specific NN hardware accelerators. The feasibility of the approach is demonstrated by the generation of a condition monitoring system for high-speed valves.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有自定义硬件加速器的边缘AI设备的平台生成
近年来,人工神经网络(NNs)已成为数据处理领域的研究热点。然而,它们的高计算需求往往阻碍了在资源受限的工业物联网系统上的部署。定制硬件加速器可以在小型边缘设备上实现实时神经网络处理,但通常难以开发和集成。在本文中,我们提出了一种硬件生成方法,可以快速创建、测试和部署具有特定应用神经网络硬件加速器的整个SoC平台。通过一个高速阀状态监测系统的生成,验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Classification for Wind Turbine Benchmark Model Based on Hilbert-Huang Transformation and Support Vector Machine Strategies [INDIN 2021 Front cover] Synergetic Control of Fixed-wing UAVs in the Presence of Wind Disturbances From Face to Face to Hybrid Teaching: an Experience on Process Plant Automation Laboratory Course during Global Pandemic Towards Policy-based Task Self-Reallocation in Dynamic Edge Computing Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1