Fishing Spot Prediction by Sea Temperature Pattern Learning

M. Iiyama, K. Zhao, Atsushi Hashimoto, Hidekazu Kasahara, M. Minoh
{"title":"Fishing Spot Prediction by Sea Temperature Pattern Learning","authors":"M. Iiyama, K. Zhao, Atsushi Hashimoto, Hidekazu Kasahara, M. Minoh","doi":"10.1109/OCEANSKOBE.2018.8559299","DOIUrl":null,"url":null,"abstract":"Determination of appropriate fishing spots is one of the most important activities in the fishing industry. Inspired by the approach followed by fishermen to determine fishing spots, this paper presents a new machine-learning method for uncovering oceanographic patterns related to good fishing spots. Our method uses a sea temperature map as the input, extracts sea temperature patterns from arbitrary points on the map, and evaluates whether the patterns correspond to good fishing spots by using two machine learning techniques; one-class support vector machine (SVM) and spectral clustering. We evaluated the efficiency of our method using fishery data on neon flying squid.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8559299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Determination of appropriate fishing spots is one of the most important activities in the fishing industry. Inspired by the approach followed by fishermen to determine fishing spots, this paper presents a new machine-learning method for uncovering oceanographic patterns related to good fishing spots. Our method uses a sea temperature map as the input, extracts sea temperature patterns from arbitrary points on the map, and evaluates whether the patterns correspond to good fishing spots by using two machine learning techniques; one-class support vector machine (SVM) and spectral clustering. We evaluated the efficiency of our method using fishery data on neon flying squid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用海温模式学习预测渔点
确定合适的渔点是渔业最重要的活动之一。受渔民确定渔点的方法的启发,本文提出了一种新的机器学习方法,用于发现与良好渔点相关的海洋学模式。我们的方法使用海温图作为输入,从地图上任意点提取海温模式,并使用两种机器学习技术评估模式是否对应于良好的捕鱼点;一类支持向量机(SVM)和谱聚类。利用虹膜飞鱼的渔业数据,对该方法的有效性进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing an Energy Effective Autonomous USV for Undertaking Missions at the Highlands of Peru Automated Peak Detection in Doppler Spectra of HF Surface Wave Radar Evaluation of Environmental Data for Search and Rescue II Time Synchronization with Multiple-Access Data Transmission Protocol in Underwater Sensor Networks A Deployment Optimization Mechanism Using Depth Adjustable Nodes in Underwater Acoustic Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1