Counterterrorism for Cyber-Physical Spaces: A Computer Vision Approach

Giuseppe Cascavilla, Johann Slabber, Fabio Palomba, D. D. Nucci, D. Tamburri, W. Heuvel
{"title":"Counterterrorism for Cyber-Physical Spaces: A Computer Vision Approach","authors":"Giuseppe Cascavilla, Johann Slabber, Fabio Palomba, D. D. Nucci, D. Tamburri, W. Heuvel","doi":"10.1145/3399715.3399826","DOIUrl":null,"url":null,"abstract":"Simulating terrorist scenarios in cyber-physical spaces---that is, urban open or (semi-) closed spaces combined with cyber-physical systems counterparts---is challenging given the context and variables therein. This paper addresses the aforementioned issue with ALTer a framework featuring computer vision and Generative Adversarial Neural Networks (GANs) over terrorist scenarios. We obtained the data for the terrorist scenarios by creating a synthetic dataset, exploiting the Grand Theft Auto V (GTAV) videogame, and the Unreal Game Engine behind it, in combination with OpenStreetMap data. The results of the proposed approach show its feasibility to predict criminal activities in cyber-physical spaces. Moreover, the usage of our synthetic scenarios elicited from GTAV is promising in building datasets for cybersecurity and Cyber-Threat Intelligence (CTI) featuring simulated video gaming platforms. We learned that local authorities can simulate terrorist scenarios for their cities based on previous or related reference and this helps them in 3 ways: (1) better determine the necessary security measures; (2) better use the expertise of the authorities; (3) refine preparedness scenarios and drills for sensitive areas.","PeriodicalId":149902,"journal":{"name":"Proceedings of the International Conference on Advanced Visual Interfaces","volume":"312 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Advanced Visual Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399715.3399826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Simulating terrorist scenarios in cyber-physical spaces---that is, urban open or (semi-) closed spaces combined with cyber-physical systems counterparts---is challenging given the context and variables therein. This paper addresses the aforementioned issue with ALTer a framework featuring computer vision and Generative Adversarial Neural Networks (GANs) over terrorist scenarios. We obtained the data for the terrorist scenarios by creating a synthetic dataset, exploiting the Grand Theft Auto V (GTAV) videogame, and the Unreal Game Engine behind it, in combination with OpenStreetMap data. The results of the proposed approach show its feasibility to predict criminal activities in cyber-physical spaces. Moreover, the usage of our synthetic scenarios elicited from GTAV is promising in building datasets for cybersecurity and Cyber-Threat Intelligence (CTI) featuring simulated video gaming platforms. We learned that local authorities can simulate terrorist scenarios for their cities based on previous or related reference and this helps them in 3 ways: (1) better determine the necessary security measures; (2) better use the expertise of the authorities; (3) refine preparedness scenarios and drills for sensitive areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络物理空间的反恐:计算机视觉方法
在网络物理空间(即与网络物理系统相结合的城市开放或(半)封闭空间)中模拟恐怖主义情景具有挑战性,因为其中存在环境和变量。本文使用ALTer解决了上述问题,ALTer是一个基于计算机视觉和生成对抗神经网络(gan)的恐怖场景框架。我们通过创建一个合成数据集,利用侠盗猎车手V (GTAV)视频游戏及其背后的虚幻游戏引擎,结合OpenStreetMap数据,获得了恐怖主义场景的数据。结果表明,该方法预测网络物理空间犯罪活动的可行性。此外,我们从《侠盗猎车手v》中提取的合成场景在构建网络安全和网络威胁情报(CTI)的数据集方面很有前景,这些数据集以模拟视频游戏平台为特征。我们了解到,地方当局可以根据以前或相关的参考资料为他们的城市模拟恐怖主义情景,这在三个方面有助于他们:(1)更好地确定必要的安全措施;(2)更好地利用当局的专业知识;(3)细化敏感地区的备灾预案和演练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HeyTAP Comparing and Exploring High-Dimensional Data with Dimensionality Reduction Algorithms and Matrix Visualizations VITRuM Evaluating User Preferences for Augmented Reality Interactions with the Internet of Things TieLent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1