Group Affect Prediction Using Multimodal Distributions

Saqib Nizam Shamsi, Bhanu Pratap Singh, Manya Wadhwa
{"title":"Group Affect Prediction Using Multimodal Distributions","authors":"Saqib Nizam Shamsi, Bhanu Pratap Singh, Manya Wadhwa","doi":"10.1109/WACVW.2018.00015","DOIUrl":null,"url":null,"abstract":"We describe our approach towards building an efficient predictive model to detect emotions for a group of people in an image. We have proposed that training a Convolutional Neural Network (CNN) model on the emotion heatmaps extracted from the image, outperforms a CNN model trained entirely on the raw images. The comparison of the models have been done on a recently published dataset of Emotion Recognition in theWild (EmotiW) challenge, 2017. The proposed method 1 achieved validation accuracy of 55.23% which is 2.44% above the baseline accuracy, provided by the EmotiW organizers.","PeriodicalId":301220,"journal":{"name":"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2018.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We describe our approach towards building an efficient predictive model to detect emotions for a group of people in an image. We have proposed that training a Convolutional Neural Network (CNN) model on the emotion heatmaps extracted from the image, outperforms a CNN model trained entirely on the raw images. The comparison of the models have been done on a recently published dataset of Emotion Recognition in theWild (EmotiW) challenge, 2017. The proposed method 1 achieved validation accuracy of 55.23% which is 2.44% above the baseline accuracy, provided by the EmotiW organizers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多模态分布进行群体影响预测
我们描述了建立一个有效的预测模型来检测图像中一群人的情绪的方法。我们提出,在从图像中提取的情感热图上训练卷积神经网络(CNN)模型,其性能优于完全在原始图像上训练的CNN模型。模型的比较已经在最近发布的2017年野外情绪识别(EmotiW)挑战的数据集上完成。提出的方法1实现了55.23%的验证准确率,比EmotiW组织者提供的基线准确率高出2.44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calorific Expenditure Estimation Using Deep Convolutional Network Features Evaluating a Convolutional Neural Network on Short-Wave Infra-Red Images Facial Attributes Guided Deep Sketch-to-Photo Synthesis Learning Visual Engagement for Trauma Recovery A Multi-task Convolutional Neural Network for Joint Iris Detection and Presentation Attack Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1