{"title":"RLMob","authors":"Ziyan Luo, Congcong Miao","doi":"10.1145/3488560.3498438","DOIUrl":null,"url":null,"abstract":"Human mobility prediction is an important task in the field of spatiotemporal sequential data mining and urban computing. Despite the extensive work on mining human mobility behavior, little attention was paid to the problem of successive mobility prediction. The state-of-the-art methods of human mobility prediction are mainly based on supervised learning. To achieve higher predictability and adapt well to the successive mobility prediction, there are four key challenges: 1) disability to the circumstance that the optimizing target is discrete-continuous hybrid and non-differentiable. In our work, we assume that the user's demands are always multi-targeted and can be modeled as a discrete-continuous hybrid function; 2) difficulty to alter the recommendation strategy flexibly according to the changes in user needs in real scenarios; 3) error propagation and exposure bias issues when predicting multiple points in successive mobility prediction; 4) cannot interactively explore user's potential interest that does not appear in the history. While previous methods met these difficulties, reinforcement learning (RL) is an intuitive answer for this task to settle these issues. We innovatively introduce RL to the successive prediction task. In this paper, we formulate this problem as a Markov Decision Process. We further propose a framework - RLMob to solve our problem. A simulated environment is carefully designed. An actor-critic framework with an instance of Proximal Policy Optimization (PPO) is applied to adapt to our scene with a large state space. Experiments show that on the task, the performance of our approach is consistently superior to that of the compared approaches.","PeriodicalId":348686,"journal":{"name":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3488560.3498438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Human mobility prediction is an important task in the field of spatiotemporal sequential data mining and urban computing. Despite the extensive work on mining human mobility behavior, little attention was paid to the problem of successive mobility prediction. The state-of-the-art methods of human mobility prediction are mainly based on supervised learning. To achieve higher predictability and adapt well to the successive mobility prediction, there are four key challenges: 1) disability to the circumstance that the optimizing target is discrete-continuous hybrid and non-differentiable. In our work, we assume that the user's demands are always multi-targeted and can be modeled as a discrete-continuous hybrid function; 2) difficulty to alter the recommendation strategy flexibly according to the changes in user needs in real scenarios; 3) error propagation and exposure bias issues when predicting multiple points in successive mobility prediction; 4) cannot interactively explore user's potential interest that does not appear in the history. While previous methods met these difficulties, reinforcement learning (RL) is an intuitive answer for this task to settle these issues. We innovatively introduce RL to the successive prediction task. In this paper, we formulate this problem as a Markov Decision Process. We further propose a framework - RLMob to solve our problem. A simulated environment is carefully designed. An actor-critic framework with an instance of Proximal Policy Optimization (PPO) is applied to adapt to our scene with a large state space. Experiments show that on the task, the performance of our approach is consistently superior to that of the compared approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RLMob
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AdaptKT: A Domain Adaptable Method for Knowledge Tracing Doctoral Consortium of WSDM'22: Exploring the Bias of Adversarial Defenses Half-Day Tutorial on Combating Online Hate Speech: The Role of Content, Networks, Psychology, User Behavior, etc. Near Real Time AI Personalization for Notifications at LinkedIn k-Clustering with Fair Outliers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1