{"title":"NOx Emissions in a Steel Reheat Furnace Firing By-Product Fuels","authors":"B. Adams, David H. Wang","doi":"10.1115/imece2001/htd-24229","DOIUrl":null,"url":null,"abstract":"\n A DOE-funded program was used to understand the mechanisms that control the formation of NOx during the combustion of steelmaking by-product fuels and to investigate possible low-cost control options to minimize the NOx emissions. This paper discusses the CFD modeling results of NOx emissions in a reheat furnace. The reheat furnace has a total of 20 burners distributed over three firing zones. The furnace is fired at a rate of 250 × 106 Btu/hr and an overall stoichiometric ratio of 1.06 (fuel lean). Fuels with heating values of approximate 500 Btu/SCF were examined, including coke oven gas (COG), blast furnace gas (BFG) and a blend of COG, BFG, natural gas (NG) and nitrogen. A good range of process variables was modeled to examine effects of fuel type, air preheat, stoichiometric ratio, firing rate and burner stoichiometry distribution on NOx emissions.\n Modeling results indicated that NOx formation in the reheat furnace is dominated by thermal NO, with some variation depending on the fuel fired. Temperature profiles showed an effective separation of the furnace interior into top and bottom zones as a result of the steel slab barrier. Higher temperatures characterized the bottom zone and elevated NOx levels as a result of the confined space and enhanced fuel air mixing provided by the slab supports. Results also showed that reburning of NOx plays a significant role in final NOx emissions with 30–40% of NOx formed being reduced by reburning in most cases. Modeling identified that operating the side burners in each burner zone slightly substoichiometric (while maintaining the overall furnace stoichiometry at 1.06) provided significant NOx reduction via reburning. NOx reductions of 23% and 30% were predicted when firing with COG and COG-NG-Air fuels, respectively. Overall furnace exit temperatures and heat flux profiles were not significantly affected by the biased firing.","PeriodicalId":426926,"journal":{"name":"Heat Transfer: Volume 4 — Combustion and Energy Systems","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4 — Combustion and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/htd-24229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A DOE-funded program was used to understand the mechanisms that control the formation of NOx during the combustion of steelmaking by-product fuels and to investigate possible low-cost control options to minimize the NOx emissions. This paper discusses the CFD modeling results of NOx emissions in a reheat furnace. The reheat furnace has a total of 20 burners distributed over three firing zones. The furnace is fired at a rate of 250 × 106 Btu/hr and an overall stoichiometric ratio of 1.06 (fuel lean). Fuels with heating values of approximate 500 Btu/SCF were examined, including coke oven gas (COG), blast furnace gas (BFG) and a blend of COG, BFG, natural gas (NG) and nitrogen. A good range of process variables was modeled to examine effects of fuel type, air preheat, stoichiometric ratio, firing rate and burner stoichiometry distribution on NOx emissions.
Modeling results indicated that NOx formation in the reheat furnace is dominated by thermal NO, with some variation depending on the fuel fired. Temperature profiles showed an effective separation of the furnace interior into top and bottom zones as a result of the steel slab barrier. Higher temperatures characterized the bottom zone and elevated NOx levels as a result of the confined space and enhanced fuel air mixing provided by the slab supports. Results also showed that reburning of NOx plays a significant role in final NOx emissions with 30–40% of NOx formed being reduced by reburning in most cases. Modeling identified that operating the side burners in each burner zone slightly substoichiometric (while maintaining the overall furnace stoichiometry at 1.06) provided significant NOx reduction via reburning. NOx reductions of 23% and 30% were predicted when firing with COG and COG-NG-Air fuels, respectively. Overall furnace exit temperatures and heat flux profiles were not significantly affected by the biased firing.