Use of a neural net computer system for analysis of flow cytometric data of phytoplankton populations

D. Frankel, R. Olson, S. Frankel, S. Chisholm
{"title":"Use of a neural net computer system for analysis of flow cytometric data of phytoplankton populations","authors":"D. Frankel, R. Olson, S. Frankel, S. Chisholm","doi":"10.1109/IJCNN.1989.118316","DOIUrl":null,"url":null,"abstract":"Summary form only given. A description is given of the application of neural net computer technology to the analysis of flow cytometry data. Although the data used in this study are from oceanographic research, the results are general and should be directly applicable to flow cytometry data or any sort. The neural network described offers the advantages of adaptability to changing conditions and potential real-time analysis. High accuracy and processing speed, near that required for real-time classification, have been achieved in a software simulation of the neural network on a Macintosh SE personal computer.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Summary form only given. A description is given of the application of neural net computer technology to the analysis of flow cytometry data. Although the data used in this study are from oceanographic research, the results are general and should be directly applicable to flow cytometry data or any sort. The neural network described offers the advantages of adaptability to changing conditions and potential real-time analysis. High accuracy and processing speed, near that required for real-time classification, have been achieved in a software simulation of the neural network on a Macintosh SE personal computer.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络计算机系统分析浮游植物种群的流式细胞术数据
只提供摘要形式。介绍了神经网络计算机技术在流式细胞术数据分析中的应用。虽然本研究使用的数据来自海洋学研究,但其结果具有普遍性,应直接适用于流式细胞术数据或任何类型的数据。所描述的神经网络具有适应变化条件和潜在实时分析的优点。在Macintosh SE个人计算机上对神经网络进行了软件模拟,达到了接近实时分类所需的高精度和处理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid distributed/local connectionist architectures A new back-propagation algorithm with coupled neuron A novel objective function for improved phoneme recognition using time delay neural networks Optimization of a digital neuron design Multitarget tracking with an optical neural net using a quadratic energy function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1