{"title":"Equi-Lipschitz minimizing trajectories for non coercive, discontinuous, non convex Bolza controlled-linear optimal control problems","authors":"C. Mariconda","doi":"10.1090/btran/80","DOIUrl":null,"url":null,"abstract":"<p>This article deals with the Lipschitz regularity of the “approximate” minimizers for the Bolza type control functional of the form <disp-formula content-type=\"math/mathml\">\n\\[\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper J Subscript t Baseline left-parenthesis y comma u right-parenthesis colon-equal integral Subscript t Superscript upper T Baseline normal upper Lamda left-parenthesis s comma y left-parenthesis s right-parenthesis comma u left-parenthesis s right-parenthesis right-parenthesis d s plus g left-parenthesis y left-parenthesis upper T right-parenthesis right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>J</mml:mi>\n <mml:mi>t</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:msubsup>\n <mml:mo>∫<!-- ∫ --></mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mi>T</mml:mi>\n </mml:msubsup>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mi>d</mml:mi>\n <mml:mi>s</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>g</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">J_t(y,u)≔\\int _t^T\\Lambda (s,y(s), u(s))\\,ds+g(y(T))</mml:annotation>\n </mml:semantics>\n</mml:math>\n\\]\n</disp-formula> among the pairs <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis y comma u right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(y,u)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfying a prescribed initial condition <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y left-parenthesis t right-parenthesis equals x\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>y</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mi>x</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">y(t)=x</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where the state <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y\">\n <mml:semantics>\n <mml:mi>y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is absolutely continuous, the control <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is summable and the dynamic is controlled-linear of the form <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y prime equals b left-parenthesis y right-parenthesis u\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>y</mml:mi>\n <mml:mo>′</mml:mo>\n </mml:msup>\n <mml:mo>=</mml:mo>\n <mml:mi>b</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>u</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">y’=b(y)u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. For <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b identical-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>b</mml:mi>\n <mml:mo>≡<!-- ≡ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">b\\equiv 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the above becomes a problem of the calculus of variations. The Lagrangian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Lamda left-parenthesis s comma y comma u right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Lambda (s,y,u)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is assumed to be either convex in the variable <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on every half-line from the origin (radial convexity in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>), or partial differentiable in the control variable and satisfies a local Lipschitz regularity on the time variable, named Condition (S). It is allowed to be extended valued, discontinuous in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y\">\n <mml:semantics>\n <mml:mi>y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> or in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and non convex in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We assume a very mild growth condition, actually a violation of the Du Bois-Reymond–Erdmann equation for high values of the control, that is fulfilled if the Lagrangian is coercive as well as in some almost linear cases. The main result states that, given any admissible pair <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis y comma u right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(y,u)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, there exists a more convenient admissible pair <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis y overbar comma u overbar right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mover>\n <mml:mi>y</mml:mi>\n <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo>\n </mml:mover>\n <mml:mo>,</mml:mo>\n <mml:mover>\n <mml:mi>u</mml:mi>\n <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo>\n </mml:mover>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(\\overline y, \\overline u)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper J Subscript t\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>J</mml:mi>\n <mml:mi>t</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">J_t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u overbar\">\n <mml:semantics>\n <mml:mover>\n <mml:mi>u</mml:mi>\n <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo>\n </mml:mover>\n <mml:annotation encoding=\"application/x-tex\">\\overline u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is bounded, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"y overbar\">\n <mml:semantics>\n <mml:mover>\n <mml:mi>y</mml:mi>\n <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo>\n </mml:mover>\n <mml:annotation encoding=\"application/x-tex\">\\overline y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is Lipschitz, with bounds and ranks that are uniform with respect to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/Math","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This article deals with the Lipschitz regularity of the “approximate” minimizers for the Bolza type control functional of the form
\[
Jt(y,u)≔∫tTΛ(s,y(s),u(s))ds+g(y(T))J_t(y,u)≔\int _t^T\Lambda (s,y(s), u(s))\,ds+g(y(T))
\]
among the pairs (y,u)(y,u) satisfying a prescribed initial condition y(t)=xy(t)=x, where the state yy is absolutely continuous, the control uu is summable and the dynamic is controlled-linear of the form y′=b(y)uy’=b(y)u. For b≡1b\equiv 1 the above becomes a problem of the calculus of variations. The Lagrangian Λ(s,y,u)\Lambda (s,y,u) is assumed to be either convex in the variable uu on every half-line from the origin (radial convexity in uu), or partial differentiable in the control variable and satisfies a local Lipschitz regularity on the time variable, named Condition (S). It is allowed to be extended valued, discontinuous in yy or in uu, and non convex in uu. We assume a very mild growth condition, actually a violation of the Du Bois-Reymond–Erdmann equation for high values of the control, that is fulfilled if the Lagrangian is coercive as well as in some almost linear cases. The main result states that, given any admissible pair (y,u)(y,u), there exists a more convenient admissible pair (y¯,u¯)(\overline y, \overline u) for JtJ_t where u¯\overline u is bounded, y¯\overline y is Lipschitz, with bounds and ranks that are uniform with respect to 查看原文
本文研究了形式为\[ J t ( y , u ) ≔ ∫ t T Λ ( s , y ( s ) , u ( s ) ) d s + g ( y ( T ) ) J_t(y,u)≔\int _t^T\Lambda (s,y(s), u(s))\,ds+g(y(T)) \]的Bolza型控制泛函在满足给定初始条件y(t)=x y(t)=x的(y,u)对(y,u)中的“近似”极小值的Lipschitz正则性,其中状态y y是绝对连续的。控制u u是可求和的,动态控制u u的形式为y ' =b(y)u y ' =b(y)u。对于b≡1 b \equiv 1,上面的问题变成了变分法的问题。假设拉格朗日方程Λ (s,y,u) \Lambda (s,y,u)在离原点(u u的径向凸性)的每条半直线上在变量u u上是凸的,或者在控制变量上是偏可微的,并且在时间变量上满足局部Lipschitz正则性,称为条件(s)。它可以是扩展值,在y y或u u上不连续。在u上不凸。我们假设一个非常温和的增长条件,实际上是对杜波依斯-雷蒙-厄德曼方程的破坏对于控制的高值,如果拉格朗日是强制的以及在一些几乎是线性的情况下,它是满足的。主要结果表明,给定任意可容许对(y,u) (y,u),对于J_t J_t存在更方便的可容许对(y¯,u¯)(\overline y, \overline u),其中u¯\overline u有界,y¯\overline y为Lipschitz,其边界和排名相对于