{"title":"The first global 883 GHz cloud ice survey: IceCube Level 1 data calibration, processing and analysis","authors":"J. Gong, Dong L. Wu, P. Eriksson","doi":"10.5194/ESSD-2021-101","DOIUrl":null,"url":null,"abstract":"Abstract. Sub-millimeter (sub-mm, 200–1000 GHz) wavelengths contribute a unique capability to fill-in the sensitivity gap between operational visible/infrared (VIS/IR) and microwave (MW) remote sensing for atmosphere cloud ice and snow. Being able of penetrating cloud to measure cloud ice mass and microphysical properties in the middle to upper troposphere, this is a critical spectrum range for us to understand the connection between cloud ice and precipitation processes. As the first space-borne 883 GHz radiometer, IceCube mission was NASA's latest effort in spaceflight demonstration of a commercial sub-mm radiometer technology. Successfully launched from the International Space Station, IceCube is essentially a free-running radiometer and collected valuable 15-month measurements of atmosphere and cloud ice. This paper describes the detailed procedures for Level 1 data calibration, processing and validation. The scientific quality and values of IceCube data are then discussed, including radiative transfer model validation and evaluation, as well as the unique spatial distribution and diurnal cycle of cloud ice that are revealed for the first time on a quasi-global scale at this frequency.\n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ESSD-2021-101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract. Sub-millimeter (sub-mm, 200–1000 GHz) wavelengths contribute a unique capability to fill-in the sensitivity gap between operational visible/infrared (VIS/IR) and microwave (MW) remote sensing for atmosphere cloud ice and snow. Being able of penetrating cloud to measure cloud ice mass and microphysical properties in the middle to upper troposphere, this is a critical spectrum range for us to understand the connection between cloud ice and precipitation processes. As the first space-borne 883 GHz radiometer, IceCube mission was NASA's latest effort in spaceflight demonstration of a commercial sub-mm radiometer technology. Successfully launched from the International Space Station, IceCube is essentially a free-running radiometer and collected valuable 15-month measurements of atmosphere and cloud ice. This paper describes the detailed procedures for Level 1 data calibration, processing and validation. The scientific quality and values of IceCube data are then discussed, including radiative transfer model validation and evaluation, as well as the unique spatial distribution and diurnal cycle of cloud ice that are revealed for the first time on a quasi-global scale at this frequency.