Sharp disparity reconstruction using sparse disparity measurement and color information

Lee-Kang Liu, Zucheul Lee, Truong Nguyen
{"title":"Sharp disparity reconstruction using sparse disparity measurement and color information","authors":"Lee-Kang Liu, Zucheul Lee, Truong Nguyen","doi":"10.1109/IVMSPW.2013.6611899","DOIUrl":null,"url":null,"abstract":"Recently, the work on dense disparity map reconstruction from 5% sparse initial estimates containing edges in disparity, has been proposed [1]. Practically, however, edges in disparity is unknown unless a dense disparity map has already been generated. In this paper, we present a realistic reconstruction framework for obtaining sharp and dense disparity maps from fixed number of sparse initial estimates with the aid of color image information. Experimental results show that sharp and dense disparity maps can be reconstructed at the cost of one pixel accuracy.","PeriodicalId":170714,"journal":{"name":"IVMSP 2013","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVMSP 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2013.6611899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recently, the work on dense disparity map reconstruction from 5% sparse initial estimates containing edges in disparity, has been proposed [1]. Practically, however, edges in disparity is unknown unless a dense disparity map has already been generated. In this paper, we present a realistic reconstruction framework for obtaining sharp and dense disparity maps from fixed number of sparse initial estimates with the aid of color image information. Experimental results show that sharp and dense disparity maps can be reconstructed at the cost of one pixel accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用稀疏视差测量和颜色信息进行锐视差重建
最近,有人提出了从包含视差边缘的5%稀疏初始估计重建密集视差图的工作[[1]]。然而,实际上,除非已经生成密集的视差图,否则视差中的边是未知的。本文提出了一种利用彩色图像信息从固定数量的稀疏初始估计中获得清晰密集视差图的现实重建框架。实验结果表明,以1像素的精度为代价,可以重建出尖锐和密集的视差图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D activity measurement for stereoscopic video Flicker-free 3D shutter glasses by retardnace control of LC cell Multi-source inverse geometry CT(MS-IGCT) system: A new concept of 3D CT imaging Subjective assessment methodology for preference of experience in 3DTV Camera trajectory recovery for image-based city street modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1