Predicting Future Decision Trees from Evolving Data

Mirko Böttcher, M. Spott, R. Kruse
{"title":"Predicting Future Decision Trees from Evolving Data","authors":"Mirko Böttcher, M. Spott, R. Kruse","doi":"10.1109/ICDM.2008.90","DOIUrl":null,"url":null,"abstract":"Recognizing and analyzing change is an important human virtue because it enables us to anticipate future scenarios and thus allows us to act pro-actively. One approach to understand change within a domain is to analyze how models and patterns evolve. Knowing how a model changes over time is suggesting to ask: Can we use this knowledge to learn a model in anticipation, such that it better reflects the near-future characteristics of an evolving domain? In this paper we provide an answer to this question by presenting an algorithm which predicts future decision trees based on a model of change. In particular, this algorithm encompasses a novel approach to change mining which is based on analyzing the changes of the decisions made during model learning. The proposed approach can also be applied to other types of classifiers and thus provides a basis for future research. We present our first experimental results which show that anticipated decision trees have the potential to outperform trees learned on the most recent data.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Recognizing and analyzing change is an important human virtue because it enables us to anticipate future scenarios and thus allows us to act pro-actively. One approach to understand change within a domain is to analyze how models and patterns evolve. Knowing how a model changes over time is suggesting to ask: Can we use this knowledge to learn a model in anticipation, such that it better reflects the near-future characteristics of an evolving domain? In this paper we provide an answer to this question by presenting an algorithm which predicts future decision trees based on a model of change. In particular, this algorithm encompasses a novel approach to change mining which is based on analyzing the changes of the decisions made during model learning. The proposed approach can also be applied to other types of classifiers and thus provides a basis for future research. We present our first experimental results which show that anticipated decision trees have the potential to outperform trees learned on the most recent data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从不断变化的数据预测未来的决策树
认识和分析变化是一项重要的人类美德,因为它使我们能够预测未来的情况,从而使我们能够积极行动。理解领域内变化的一种方法是分析模型和模式是如何演变的。知道一个模型是如何随时间变化的,就意味着要问:我们能否利用这些知识来学习一个模型,从而更好地反映一个发展领域的近期特征?在本文中,我们通过提出一种基于变化模型预测未来决策树的算法来回答这个问题。特别是,该算法包含了一种新的变化挖掘方法,该方法基于分析模型学习过程中所做决策的变化。该方法也可应用于其他类型的分类器,为今后的研究奠定了基础。我们提出了我们的第一个实验结果,表明预期决策树有可能优于在最新数据上学习的树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SeqStream: Mining Closed Sequential Patterns over Stream Sliding Windows Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis A Probability Model for Projective Clustering on High Dimensional Data Text Cube: Computing IR Measures for Multidimensional Text Database Analysis A Hierarchical Algorithm for Clustering Uncertain Data via an Information-Theoretic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1