{"title":"Glottal features for speech-based cognitive load classification","authors":"T. Yap, J. Epps, E. Choi, E. Ambikairajah","doi":"10.1109/ICASSP.2010.5494987","DOIUrl":null,"url":null,"abstract":"Cognitive load measurement is important when designing adaptive interfaces that optimize the performance of users working on high mental load tasks. Recent research on automatic speech-based measurement system indicates that cognitive load information is more prominent in the frequency region below 1 kHz. This study investigates the effects of cognitive load on glottal parameters (open quotient, normalized amplitude quotient and speed quotient), and proposes a system employing these parameters as features for cognitive load classification. Analysis of the glottal parameter distributions suggests that an increase in cognitive load can be related to a more creaky voice quality. Additionally, three-class classification results show that score-level fusion of systems based on the glottal features and baseline features (MFCCs, pitch, intensity and shifted delta cepstra) improves the baseline accuracy from 79% to 84%.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5494987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Cognitive load measurement is important when designing adaptive interfaces that optimize the performance of users working on high mental load tasks. Recent research on automatic speech-based measurement system indicates that cognitive load information is more prominent in the frequency region below 1 kHz. This study investigates the effects of cognitive load on glottal parameters (open quotient, normalized amplitude quotient and speed quotient), and proposes a system employing these parameters as features for cognitive load classification. Analysis of the glottal parameter distributions suggests that an increase in cognitive load can be related to a more creaky voice quality. Additionally, three-class classification results show that score-level fusion of systems based on the glottal features and baseline features (MFCCs, pitch, intensity and shifted delta cepstra) improves the baseline accuracy from 79% to 84%.