{"title":"Integrated congestion-control mechanism in optical burst switching networks","authors":"Sungchang Kim, B. Mukherjee, Minho Kang","doi":"10.1109/GLOCOM.2005.1578011","DOIUrl":null,"url":null,"abstract":"Optical burst switching (OBS) is a promising solution to implement the optical Internet backbone. However, the lack of adequate congestion-control mechanisms may result in high burst loss. Schemes such as fiber delay line (FDL), wavelength conversion, and deflection routing to reduce burst collision are unable to prevent the network congestion effectively. To address this problem, we propose and investigate a global solution, called integrated congestion-control mechanism (ICCM), for OBS networks. ICCM, which combines congestion avoidance with recovery mechanism, restricts the amount of burst flows entering the network according to the feedback information from core routers to edge routers to prevent network congestion. Also, a flow-policing scheme is proposed to intentionally drop the overloaded traffic with a certain probability at a core router to support fairness among flows. Moreover, the transmission rate of each flow is controlled to achieve optimized performance such as maximizing throughput or minimizing loss probability using a two-step rate controller at the edge router. Simulation results show that ICCM effectively eliminates congestion within the network and that, when combined with a flow-policing mechanism, the fairness for competing flows can be supported while maintaining effective network performance","PeriodicalId":319736,"journal":{"name":"GLOBECOM '05. IEEE Global Telecommunications Conference, 2005.","volume":"612 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM '05. IEEE Global Telecommunications Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2005.1578011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Optical burst switching (OBS) is a promising solution to implement the optical Internet backbone. However, the lack of adequate congestion-control mechanisms may result in high burst loss. Schemes such as fiber delay line (FDL), wavelength conversion, and deflection routing to reduce burst collision are unable to prevent the network congestion effectively. To address this problem, we propose and investigate a global solution, called integrated congestion-control mechanism (ICCM), for OBS networks. ICCM, which combines congestion avoidance with recovery mechanism, restricts the amount of burst flows entering the network according to the feedback information from core routers to edge routers to prevent network congestion. Also, a flow-policing scheme is proposed to intentionally drop the overloaded traffic with a certain probability at a core router to support fairness among flows. Moreover, the transmission rate of each flow is controlled to achieve optimized performance such as maximizing throughput or minimizing loss probability using a two-step rate controller at the edge router. Simulation results show that ICCM effectively eliminates congestion within the network and that, when combined with a flow-policing mechanism, the fairness for competing flows can be supported while maintaining effective network performance