Machine Learning in Cyber Security Analytics using NSL-KDD Dataset

Rui-Fong Hong, S. Horng, Shieh-Shing Lin
{"title":"Machine Learning in Cyber Security Analytics using NSL-KDD Dataset","authors":"Rui-Fong Hong, S. Horng, Shieh-Shing Lin","doi":"10.1109/taai54685.2021.00057","DOIUrl":null,"url":null,"abstract":"Classification is the procedure to recognize, understand, as well as group ideas and objects into given categories. Classification techniques adopt training data patterns to predict the likelihood that subsequent data will classify into one of the given categories. Classification techniques utilize a variety of algorithms to classify future datasets through training data patterns. In current society, many network attacks continue to carry out various types of attacks. This work performs data pre-processing and uses Python with machine learning algorithms to analyze the NSL-KDD data set. We use various machine learning methods, such as decision trees, random forests, Naïve Bayes, KNN, Gradient Boosted Trees, and SVM to analyze the confusion matrix and predict the accuracy. We also draw the ROC curve and the AUC area. We calculate the ACC accuracy and make a simple assessment of the quality of different algorithms. Test results show that through data pre-processing, machine learning algorithms can be performed with extremely high accuracy.","PeriodicalId":343821,"journal":{"name":"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/taai54685.2021.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Classification is the procedure to recognize, understand, as well as group ideas and objects into given categories. Classification techniques adopt training data patterns to predict the likelihood that subsequent data will classify into one of the given categories. Classification techniques utilize a variety of algorithms to classify future datasets through training data patterns. In current society, many network attacks continue to carry out various types of attacks. This work performs data pre-processing and uses Python with machine learning algorithms to analyze the NSL-KDD data set. We use various machine learning methods, such as decision trees, random forests, Naïve Bayes, KNN, Gradient Boosted Trees, and SVM to analyze the confusion matrix and predict the accuracy. We also draw the ROC curve and the AUC area. We calculate the ACC accuracy and make a simple assessment of the quality of different algorithms. Test results show that through data pre-processing, machine learning algorithms can be performed with extremely high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用NSL-KDD数据集的网络安全分析中的机器学习
分类是识别、理解以及将想法和对象归为特定类别的过程。分类技术采用训练数据模式来预测后续数据归入给定类别之一的可能性。分类技术利用各种算法通过训练数据模式对未来的数据集进行分类。在当今社会,许多网络攻击不断进行各种类型的攻击。这项工作执行数据预处理,并使用Python和机器学习算法来分析NSL-KDD数据集。我们使用各种机器学习方法,如决策树、随机森林、Naïve贝叶斯、KNN、梯度提升树和支持向量机来分析混淆矩阵并预测准确性。我们还绘制了ROC曲线和AUC面积。我们计算了ACC的精度,并对不同算法的质量进行了简单的评价。测试结果表明,通过数据预处理,机器学习算法可以以极高的精度执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Random Forests and Decision Trees to Predict Viewing Game Live Streaming via Viewers’ Comments [Title page iii] An Automatic Response System based on Multi-layer Perceptual Neural Network and Web Crawler MLNN: A Novel Network Intrusion Detection Based on Multilayer Neural Network A Hybrid Deep Learning Network for Long-Term Travel Time Prediction in Freeways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1