A Cluster-Based Method for Action Segmentation Using Spatio-Temporal and Positional Encoded Embeddings

Guilherme de A. P. Marques, A. Busson, Alan Livio Vasconcelos Guedes, S. Colcher
{"title":"A Cluster-Based Method for Action Segmentation Using Spatio-Temporal and Positional Encoded Embeddings","authors":"Guilherme de A. P. Marques, A. Busson, Alan Livio Vasconcelos Guedes, S. Colcher","doi":"10.1145/3470482.3479632","DOIUrl":null,"url":null,"abstract":"A crucial task to overall video understanding is the recognition and localisation in time of different actions or events that are present along the scenes. To address this problem, action segmentation must be achieved. Action segmentation consists of temporally segmenting a video by labeling each frame with a specific action. In this work, we propose a novel action segmentation method that requires no prior video analysis and no annotated data. Our method involves extracting spatio-temporal features from videos in samples of 0.5s using a pre-trained deep network. Data is then transformed using a positional encoder and finally a clustering algorithm is applied with the use of a silhouette score to find the optimal number of clusters where each cluster presumably corresponds to a different single and distinguishable action. In experiments, we show that our method produces competitive results on Breakfast and Inria Instructional Videos dataset benchmarks.","PeriodicalId":350776,"journal":{"name":"Proceedings of the Brazilian Symposium on Multimedia and the Web","volume":"322 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Brazilian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470482.3479632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A crucial task to overall video understanding is the recognition and localisation in time of different actions or events that are present along the scenes. To address this problem, action segmentation must be achieved. Action segmentation consists of temporally segmenting a video by labeling each frame with a specific action. In this work, we propose a novel action segmentation method that requires no prior video analysis and no annotated data. Our method involves extracting spatio-temporal features from videos in samples of 0.5s using a pre-trained deep network. Data is then transformed using a positional encoder and finally a clustering algorithm is applied with the use of a silhouette score to find the optimal number of clusters where each cluster presumably corresponds to a different single and distinguishable action. In experiments, we show that our method produces competitive results on Breakfast and Inria Instructional Videos dataset benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚类的时空和位置编码嵌入动作分割方法
整体视频理解的一个关键任务是对场景中出现的不同动作或事件的识别和定位。为了解决这个问题,必须实现行动分割。动作分割是通过在每一帧上标记一个特定的动作来对视频进行暂时分割。在这项工作中,我们提出了一种新的动作分割方法,不需要事先的视频分析和注释数据。我们的方法包括使用预训练的深度网络从0.5s样本的视频中提取时空特征。然后使用位置编码器转换数据,最后应用聚类算法,使用轮廓分数来找到最佳数量的聚类,其中每个聚类可能对应于不同的单一可区分的动作。在实验中,我们证明了我们的方法在Breakfast和Inria教学视频数据集基准上产生了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Topic Modeling Pre-processing Pipelines for Portuguese Texts A Proposal to Apply SignWriting in IMSC1 Standard for the Next-Generation of Brazilian DTV Broadcasting System Once Learning for Looking and Identifying Based on YOLO-v5 Object Detection I can’t pay! Accessibility analysis of mobile banking apps Should We Translate? Evaluating Toxicity in Online Comments when Translating from Portuguese to English
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1