A. P, Avinash Sharma, S. R. Kawale, S. P. Diwan, Dankan Gowda V
{"title":"Intelligent Breast Abnormality Framework for Detection and Evaluation of Breast Abnormal Parameters","authors":"A. P, Avinash Sharma, S. R. Kawale, S. P. Diwan, Dankan Gowda V","doi":"10.1109/ICECAA55415.2022.9936206","DOIUrl":null,"url":null,"abstract":"Unlike the healthy cells in the breast tissue, cancerous breast cells are unwelcome and have strange properties. In both sexes, this will quickly expand and infiltrate adjacent tissue, leading to the formation of a tumour. Using the Intelligent-Breast Abnormality Detection (I-BAD) framework, many breast cancer parameters are evaluated in this article. It has already been shown that some indicators may be used for early detection of breast cancer. There is also discussion of the instruments and strategies that facilitate the monitoring of the selected breast health metrics. Classification methods that use machine learning to store and analyse data are also discussed. The suggested I-BAD framework’s process is then visually shown in clean drawings.","PeriodicalId":273850,"journal":{"name":"2022 International Conference on Edge Computing and Applications (ICECAA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA55415.2022.9936206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Unlike the healthy cells in the breast tissue, cancerous breast cells are unwelcome and have strange properties. In both sexes, this will quickly expand and infiltrate adjacent tissue, leading to the formation of a tumour. Using the Intelligent-Breast Abnormality Detection (I-BAD) framework, many breast cancer parameters are evaluated in this article. It has already been shown that some indicators may be used for early detection of breast cancer. There is also discussion of the instruments and strategies that facilitate the monitoring of the selected breast health metrics. Classification methods that use machine learning to store and analyse data are also discussed. The suggested I-BAD framework’s process is then visually shown in clean drawings.