Value predictors for reuse through speculation on traces

M. Pilla, P. Navaux, B. Childers, Amarildo T. da Costa, F. França
{"title":"Value predictors for reuse through speculation on traces","authors":"M. Pilla, P. Navaux, B. Childers, Amarildo T. da Costa, F. França","doi":"10.1109/CAHPC.2004.42","DOIUrl":null,"url":null,"abstract":"Reusing dynamic sequences of instructions - i.e., traces - improves performance for many benchmarks. However, many traces are not reused because of unavailable inputs in the reuse test. Reuse through speculation on traces (RST) aims to increase the number of reused traces by predicting those inputs when necessary, with minimal additional hardware when compared to nonspeculative trace reuse. In this paper, we compare last n-value and stride-aware prediction for trace inputs. Last n-value prediction uses the last recorded values as predictions, while stride-aware prediction identifies and uses strides to compute new predictions. Stride-aware RST has a higher hardware cost than last n-value RST and has also the shortcoming of not allowing branches inside predicted traces. This paper aims to determine which scheme is the most beneficial for RST. We show that stride values are important for reuse in RST and that last n-value prediction works as well as the more sophisticated stride-aware approach with simpler hardware.","PeriodicalId":375288,"journal":{"name":"16th Symposium on Computer Architecture and High Performance Computing","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Symposium on Computer Architecture and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2004.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Reusing dynamic sequences of instructions - i.e., traces - improves performance for many benchmarks. However, many traces are not reused because of unavailable inputs in the reuse test. Reuse through speculation on traces (RST) aims to increase the number of reused traces by predicting those inputs when necessary, with minimal additional hardware when compared to nonspeculative trace reuse. In this paper, we compare last n-value and stride-aware prediction for trace inputs. Last n-value prediction uses the last recorded values as predictions, while stride-aware prediction identifies and uses strides to compute new predictions. Stride-aware RST has a higher hardware cost than last n-value RST and has also the shortcoming of not allowing branches inside predicted traces. This paper aims to determine which scheme is the most beneficial for RST. We show that stride values are important for reuse in RST and that last n-value prediction works as well as the more sophisticated stride-aware approach with simpler hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过推测跟踪来重用的价值预测器
重用指令的动态序列(即跟踪)可以提高许多基准测试的性能。然而,由于重用测试中不可用的输入,许多跟踪没有被重用。通过推测跟踪进行重用(RST)旨在通过在必要时预测这些输入来增加重用的跟踪的数量,与非推测跟踪重用相比,只需要最少的额外硬件。在本文中,我们比较了跟踪输入的最后n值和步幅感知预测。最后n值预测使用最后记录的值作为预测,而步幅感知预测识别并使用步幅计算新的预测。步幅感知RST比最后n值RST具有更高的硬件成本,并且也存在不允许在预测走线内进行分支的缺点。本文旨在确定哪种方案对RST最有利。我们表明,步幅值对于RST中的重用很重要,最后n值预测与使用更简单硬件的更复杂的步幅感知方法一样有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study of errant pipeline flushes caused by value misspeculation A performance evaluation of a quorum-based state-machine replication algorithm for computing grids Cache filtering techniques to reduce the negative impact of useless speculative memory references on processor performance ArchC: a systemC-based architecture description language Optimizations for compiled simulation using instruction type information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1