Network Anomaly Detection with Stochastically Improved Autoencoder Based Models

R. C. Aygun, A. Yavuz
{"title":"Network Anomaly Detection with Stochastically Improved Autoencoder Based Models","authors":"R. C. Aygun, A. Yavuz","doi":"10.1109/CSCloud.2017.39","DOIUrl":null,"url":null,"abstract":"Intrusion detection systems do not perform well when it comes to detecting zero-day attacks, therefore improving their performance in that regard is an active research topic. In this study, to detect zero-day attacks with high accuracy, we proposed two deep learning based anomaly detection models using autoencoder and denoising autoencoder respectively. The key factor that directly affects the accuracy of the proposed models is the threshold value which was determined using a stochastic approach rather than the approaches available in the current literature. The proposed models were tested using the KDDTest+ dataset contained in NSL-KDD, and we achieved an accuracy of 88.28% and 88.65% respectively. The obtained results show that, as a singular model, our proposed anomaly detection models outperform any other singular anomaly detection methods and they perform almost the same as the newly suggested hybrid anomaly detection models.","PeriodicalId":436299,"journal":{"name":"2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud)","volume":"780 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCloud.2017.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

Abstract

Intrusion detection systems do not perform well when it comes to detecting zero-day attacks, therefore improving their performance in that regard is an active research topic. In this study, to detect zero-day attacks with high accuracy, we proposed two deep learning based anomaly detection models using autoencoder and denoising autoencoder respectively. The key factor that directly affects the accuracy of the proposed models is the threshold value which was determined using a stochastic approach rather than the approaches available in the current literature. The proposed models were tested using the KDDTest+ dataset contained in NSL-KDD, and we achieved an accuracy of 88.28% and 88.65% respectively. The obtained results show that, as a singular model, our proposed anomaly detection models outperform any other singular anomaly detection methods and they perform almost the same as the newly suggested hybrid anomaly detection models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机改进自编码器模型的网络异常检测
入侵检测系统在检测零日攻击方面表现不佳,因此提高其在这方面的性能是一个活跃的研究课题。为了高精度检测零日攻击,我们提出了两种基于深度学习的异常检测模型,分别使用自编码器和去噪自编码器。直接影响所提出模型准确性的关键因素是阈值,该阈值是使用随机方法而不是当前文献中可用的方法确定的。使用NSL-KDD中包含的KDDTest+数据集对所提出的模型进行了测试,准确率分别达到了88.28%和88.65%。结果表明,作为一个奇异模型,我们提出的异常检测模型优于其他奇异异常检测方法,其性能与新提出的混合异常检测模型几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Framework for the Information Classification in ISO 27005 Standard Finding the Best Box-Cox Transformation in Big Data with Meta-Model Learning: A Case Study on QCT Developer Cloud Distributed Shuffle Index in the Cloud: Implementation and Evaluation Performance Study of Ceph Storage with Intel Cache Acceleration Software: Decoupling Hadoop MapReduce and HDFS over Ceph Storage Advanced Fully Homomorphic Encryption Scheme Over Real Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1