Neural Machine Based Mobile Applications Code Translation

M. H. Hassan, Omar A. Mahmoud, O. A. Mohammed, Ammar Y. Baraka, Amira T. Mahmoud, A. Yousef
{"title":"Neural Machine Based Mobile Applications Code Translation","authors":"M. H. Hassan, Omar A. Mahmoud, O. A. Mohammed, Ammar Y. Baraka, Amira T. Mahmoud, A. Yousef","doi":"10.1109/NILES50944.2020.9257935","DOIUrl":null,"url":null,"abstract":"Although many cross platform mobile development software used a trans-compiler-based approach, it was very difficult to generalize it to work in both directions. For example, to convert between Java for Android Development and Swift for iOS development and vice versa. This is due to the need of writing a specific parser for each source language, and a specific code generator for each destination language. Neural network-based models are used successfully to translate between natural languages, including English, French, German any many others by providing enough datasets and without the need of adding language specific code for understanding and generation. In this paper, a source code converter based on the Neural Machine Translation Transformer Model that can translate from Java to Swift and vice versa is introduced. A synthesized dataset is used to train the model, the pipeline used for the translation as well as the code synthesis procedure throughout the work are illustrated. Initial results are promising and give motivation to further enhance the proposed tool.","PeriodicalId":253090,"journal":{"name":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES50944.2020.9257935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Although many cross platform mobile development software used a trans-compiler-based approach, it was very difficult to generalize it to work in both directions. For example, to convert between Java for Android Development and Swift for iOS development and vice versa. This is due to the need of writing a specific parser for each source language, and a specific code generator for each destination language. Neural network-based models are used successfully to translate between natural languages, including English, French, German any many others by providing enough datasets and without the need of adding language specific code for understanding and generation. In this paper, a source code converter based on the Neural Machine Translation Transformer Model that can translate from Java to Swift and vice versa is introduced. A synthesized dataset is used to train the model, the pipeline used for the translation as well as the code synthesis procedure throughout the work are illustrated. Initial results are promising and give motivation to further enhance the proposed tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经机器的移动应用程序代码翻译
尽管许多跨平台移动开发软件使用基于编译器的方法,但很难将其推广到两个方向。例如,在Android开发的Java和iOS开发的Swift之间进行转换,反之亦然。这是因为需要为每种源语言编写特定的解析器,并为每种目标语言编写特定的代码生成器。基于神经网络的模型被成功地用于自然语言之间的翻译,包括英语、法语、德语和许多其他语言,通过提供足够的数据集,而不需要添加语言特定的代码来理解和生成。本文介绍了一种基于神经网络机器翻译转换器模型的源代码转换器,该转换器可以在Java语言和Swift语言之间进行转换。使用合成的数据集来训练模型,说明了翻译所用的管道以及整个工作中的代码合成过程。初步结果是有希望的,并为进一步加强所建议的工具提供了动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decentralized Intersection Management of Autonomous Vehicles Using Nonlinear MPC Low power and area SHA-256 hardware accelerator on Virtex-7 FPGA Dynamic Programming Applications: A Suvrvey Self-Organizing Maps to Assess Rehabilitation Progress of Post-Stroke Patients SoC loosely Coupled Navigation Algorithm Evaluation via 6-DOF Flight Simulation Model of Guided Bomb
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1