State of charge estimation based on extened Kalman filter algorithm for Lithium-Ion battery

E. Kamal, A. Hajjaji, A. M. Mabwe
{"title":"State of charge estimation based on extened Kalman filter algorithm for Lithium-Ion battery","authors":"E. Kamal, A. Hajjaji, A. M. Mabwe","doi":"10.1109/MED.2015.7158833","DOIUrl":null,"url":null,"abstract":"Estimation of the state of charge (SOC) is a critical parameter for the control of propulsion systems in plug-in hybrid electric vehicles (PHEV) and the electric vehicles (EVs). This paper proposes the SOC estimator of a Lithium-Ion battery using the adaptive extended Kalman filter (EKF). This method uses an optimization algorithm to update the EKF model parameters during a charge period. Accurate knowledge of the nonlinear relationship between the open circuit voltage (OCV) and the SOC is required for adaptive SOC tracking during battery usage. EKF is employed to estimate the SOC by considering it as one of the states of the battery system. The dynamic model structure adopted is based on an equivalent circuit model whose parameters are scheduled on the SOC, temperature, and current direction. The validity of the procedure is demonstrated experimentally for an A123 systems' APR18650m1 LiFePO4 battery.","PeriodicalId":316642,"journal":{"name":"2015 23rd Mediterranean Conference on Control and Automation (MED)","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2015.7158833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Estimation of the state of charge (SOC) is a critical parameter for the control of propulsion systems in plug-in hybrid electric vehicles (PHEV) and the electric vehicles (EVs). This paper proposes the SOC estimator of a Lithium-Ion battery using the adaptive extended Kalman filter (EKF). This method uses an optimization algorithm to update the EKF model parameters during a charge period. Accurate knowledge of the nonlinear relationship between the open circuit voltage (OCV) and the SOC is required for adaptive SOC tracking during battery usage. EKF is employed to estimate the SOC by considering it as one of the states of the battery system. The dynamic model structure adopted is based on an equivalent circuit model whose parameters are scheduled on the SOC, temperature, and current direction. The validity of the procedure is demonstrated experimentally for an A123 systems' APR18650m1 LiFePO4 battery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展卡尔曼滤波算法的锂离子电池充电状态估计
充电状态(SOC)的估计是插电式混合动力汽车(PHEV)和纯电动汽车(ev)推进系统控制的关键参数。提出了一种基于自适应扩展卡尔曼滤波(EKF)的锂离子电池荷电状态估计方法。该方法采用优化算法在充电周期内更新EKF模型参数。准确了解开路电压(OCV)与SOC之间的非线性关系是电池使用过程中自适应SOC跟踪的必要条件。将荷电状态作为电池系统的一种状态来估计荷电状态。采用的动态模型结构基于等效电路模型,其参数按SOC、温度和电流方向调度。通过A123系统的APR18650m1 LiFePO4电池的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-rate predictive cascade speed control of synchronous machines in automotive electrical traction drives Robust set invariance and contractivity of discrete-time systems: The generators approach Timed Discrete event system approach to online testing of asynchronous circuits Event-based control for IPTD processes with simple tuning methods Steerability analysis on slopes of a mobile robot with a ground contact arm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1