{"title":"Some distance measures for morphological diversification in generative evolutionary robotics","authors":"Eivind Samuelsen, K. Glette","doi":"10.1145/2576768.2598325","DOIUrl":null,"url":null,"abstract":"Evolutionary robotics often involves optimization in large, complex search spaces, requiring good population diversity. Recently, measures to actively increase diversity or novelty have been employed in order to get sufficient exploration of the search space either as the sole optimization objective or in combination with some performance measurement. When evolving morphology in addition to the control system, it can be difficult to construct a measure that sufficiently captures the qualitative differences between individuals. In this paper we investigate four diversity measures, applied in a set of evolutionary robotics experiments using an indirect encoding for evolving robot morphology. In the experiments we optimize forward locomotion capabilities of symmetrical legged robots in a physics simulation. Two distance measures in Cartesian phenotype feature spaces are compared with two methods operating in the space of possible morphology graphs. These measures are used for computing a diversity objective in a multi-objective evolutionary algorithm, and compared to a control case with no diversity objective. For the given task one of the distance measures shows a clear improvement over the control case in improving the main objectives, while others display better ability to diversify, underlining the difficulty of designing good, general measures of morphological diversity.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Evolutionary robotics often involves optimization in large, complex search spaces, requiring good population diversity. Recently, measures to actively increase diversity or novelty have been employed in order to get sufficient exploration of the search space either as the sole optimization objective or in combination with some performance measurement. When evolving morphology in addition to the control system, it can be difficult to construct a measure that sufficiently captures the qualitative differences between individuals. In this paper we investigate four diversity measures, applied in a set of evolutionary robotics experiments using an indirect encoding for evolving robot morphology. In the experiments we optimize forward locomotion capabilities of symmetrical legged robots in a physics simulation. Two distance measures in Cartesian phenotype feature spaces are compared with two methods operating in the space of possible morphology graphs. These measures are used for computing a diversity objective in a multi-objective evolutionary algorithm, and compared to a control case with no diversity objective. For the given task one of the distance measures shows a clear improvement over the control case in improving the main objectives, while others display better ability to diversify, underlining the difficulty of designing good, general measures of morphological diversity.