{"title":"How does TCP generate pseudo-self-similarity?","authors":"Liang Guo, M. Crovella, I. Matta","doi":"10.1109/MASCOT.2001.948871","DOIUrl":null,"url":null,"abstract":"Long-range dependence has been observed in many recent Internet traffic measurements. In addition, some recent studies have shown that under certain network conditions, TCP itself can produce traffic that exhibits dependence over limited timescales, even in the absence of higher-level variability. In this paper, we use a simple Markovian model to argue that when the loss rate is relatively high, TCP's adaptive congestion control mechanism indeed generates traffic with OFF periods exhibiting power-law shape over several timescales and thus introduces pseudo-long-range dependence into the overall traffic. Moreover, we observe that more variable initial retransmission timeout values for different packets introduces more variable packet inter-arrival times, which increases the burstiness of the overall traffic. We can thus explain why a single TCP connection can produce a time-series that can be misidentified as self-similar using standard tests.","PeriodicalId":375127,"journal":{"name":"MASCOTS 2001, Proceedings Ninth International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MASCOTS 2001, Proceedings Ninth International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOT.2001.948871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Long-range dependence has been observed in many recent Internet traffic measurements. In addition, some recent studies have shown that under certain network conditions, TCP itself can produce traffic that exhibits dependence over limited timescales, even in the absence of higher-level variability. In this paper, we use a simple Markovian model to argue that when the loss rate is relatively high, TCP's adaptive congestion control mechanism indeed generates traffic with OFF periods exhibiting power-law shape over several timescales and thus introduces pseudo-long-range dependence into the overall traffic. Moreover, we observe that more variable initial retransmission timeout values for different packets introduces more variable packet inter-arrival times, which increases the burstiness of the overall traffic. We can thus explain why a single TCP connection can produce a time-series that can be misidentified as self-similar using standard tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TCP是如何产生伪自相似性的?
在最近的许多互联网流量测量中都观察到远程依赖性。此外,最近的一些研究表明,在某些网络条件下,TCP本身可以产生在有限时间尺度上表现出依赖性的流量,即使在没有更高级别可变性的情况下也是如此。在本文中,我们使用一个简单的马尔可夫模型来证明,当损失率相对较高时,TCP的自适应拥塞控制机制确实产生了在几个时间尺度上具有幂律形状的关闭周期的流量,从而在总体流量中引入了伪远程依赖。此外,我们观察到,不同数据包的初始重传超时值变化越大,会引入更多的数据包间到达时间变化,从而增加整体流量的突发性。因此,我们可以解释为什么单个TCP连接可以产生一个时间序列,可以使用标准测试错误地识别为自相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal resource assignment in Internet data centers A bit-parallel search algorithm for allocating free space BRITE: an approach to universal topology generation Analysis of timeout-based adaptive wormhole routing Performance study of a multipath routing method for wireless mobile ad hoc networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1